

RADC-TR-82-286, Voi IV B (of six)
Phase Report
November 1982

BASIC EMC TECHNOLOGY ADVANCEMENT FOR C³ SYSTEMS - SHIELD, A Digital Computer Program for Computing Crosstalk Between Shielded Cables

Southeastern Center for Electrical Engineering Education

Clayton R. PAUL

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, NY 13441

83 02 023 096

THE FILE COPY

This report has been reviewed by the RADC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-82-286, Volume IV B (of six) has been reviewed and is approved for publication.

APPROVED:

GERARD T CAPPARO

GERARD T. CAPKARO Project Engineer

APPROVED:

EDMUND 3 WESTCOTT Technical Director

Reliability & Compatibility Division

FOR THE COMMANDER:

JOHN P. HUSS

Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (RBCT) Griffiss AFB NY 13441. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTION BEFORE COMPLETING				
	3. RECIPIENT'S CATALOG NUMBER			
RADC-TR-82-286, Vol IV B (of six) AD-A124	862			
4. TITUE (and Substite) BASIC EMC TECHNOLOGY ADVANCEMENT FOR C ³ SYSTEMS	Dhace Penert			
- SHIELD, A Digital Computer Program for	Phase Report Jun 81 - Dec 81			
Computing Crosstalk Between Shielded Cables	6. PERFORMING ORG. REPORT NUMBER			
	N/A			
7: AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(s)			
Clayton R PAUL	F30602-81-C-0062			
9. PERFORMING ORGANIZATION NAME AND ADDRESS Southeastern Center for Electrical	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
Engineering Education	62702F			
1101 Massachusetts Avenue, St Cloud FL 32796	23380335			
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE			
Rome Air Development Center (RBCT)	November 1982			
Griffiss AFB NY 13441	13. NUMBER OF PAGES			
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)			
Same	UNCLASSIFIED			
	150. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A			
16. DISTRIBUTION STATEMENT (of this Report)	N/A			
Approved for public release; distribution unlimi				
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 29, if different from	en Report)			
Same				
IS SUPPLEMENTARY NOTES RADC Project Engineers: Roy F. Stratton (RBCT	·)			
Gerard T. Capraro (RBCT	r)			
Work was performed at the University of Kentucky	, Dept of Electrical			
Engineering, Lexington KY 40506	(See reverse)			
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Electromagnetic Compatibility Braided-Sh	ield Cables			
Cable Coupling Coaxial Li				
Transmission Lines Surface Tr	ansfer Impedance			
Wire-to-Wire Coupling Shielded W				
Multiconductor Transmission Lines Shielded C	ables			
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)				
This report contains the description and verific				
program, SHIELD, to be used in the prediction of	crosstalk in transmission			
lines consisting of unshielded wires and/or shie				
be above a ground plane (Type 1) or within an overall, circular, cylindri-				
cal shield which may be solid or braided and a wire (the shielded wire)				
located concentrically on the axis of the shield				
stranded and all conductors are treated as imper	fect conductors; that is,			

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

their per-unit-length impedances are nonzero. Through-braid coupling for braided shields as well as diffusion for both types are included in the model. The shielded cables may have exposed sections at either end (pigtail sections) in which the shielded wire is not covered by the shield Over these pigtail sections, a pigtail wire, parallel to the shielded wire, connects the shield to the reference conductor at that end via either a short circuit or an open circuit. These pigtail sections are included in the representation to simulate the common practice of terminating a shielded cable in a connector via these pigtail wires. The pigtail sections may be of different lengths. The program is written in FORTRAN IV and should be implementable on a wide range of digital computers.

X

Block 18 (Cont'd)

Volumes I - III, V and VI will be published at a later date.

UNCLASSIFIED

Blatings

RADC-TR-82-286, Vol IVB

Title: BASIC EMC TECHNOLOGY ADVANCEMENT FOR C³ SYSTEMS -

Shield, A Digital Computer Program for Computing

Crosstalk Between Shielded Cables

Dated: November 1982

UNCLASSIFIED ERRATA February 1983

Please change author's name on cover and DD Form 1473 to read;

Clayton R. Paul

Rome Air Development Center
Air Force Systems Command
Griffiss Air Force Base, New York 13441

PREFACE

The author of this report is Clayton R. Paul. He received the B.S. degree from The Citadel, Charleston, S.C., in 1963, the M.S. degree from Georgia Institute of Technology, Atlanta, in 1964, and the Ph.D. degree from Purdue University, Lafayette, IN., in 1970, all in electrical engineering.

From 1964 to 1965, he served as an Instructor on the faculty of Georgia Institute of Technology and from 1970 to 1971 held a Postdoctoral Fellowship with the Electromagnetic Compatibility Branch, Rome Air Development Center, Griffiss AFB, N.Y. He is currently a Professor of Electrical Engineering at the University of Kentucky, Lexington.

Acce	ssion For		7
	GRA&I) T	1
DTIC		T	1
Unan	nounced		1
Just	ification_		4
Ву			
Dist	ribution/		4
Ava	llability (codes	(Ne COA,
	Avail and	/or	Sec.
Dist	Special		1 3/
A			

TABLE OF CONTENTS

				Page
I.	Intro	duction		1
II.	Deriv	ration of the Line Equations	•	18
	2.1	Shielded Section	•	18
	2.2	Pigtail Sections	•	35
	2.3	The Chain Parameter Matrices of the Sections		36
	2.4	The Overall Chain Parameter Matrix of the Line	•	37
	2.5	Incorporating the Terminal Conditions	•	38
III.	Descr	iption of the Program		43
	3.1	Main Program Description		43
	3.2	Function Subprogram LS1		47
	3.3	Function Subprogram LMl	. •	47
	3.4	Function Subprogram LS2		47
	3.5	Function Subprogram LM2		48
	3.6	Function Subprogram STB		48
	3.7	Function Subprogram LTB		48
	3.8	Function Subprogram ZWW		49
	3.9	Function Subprogram ZDB		50
	3.10	Function Subprogram ZSB		51
	3.11	Function Subprogram ZDS		51
	3.12	Function Subprogram ZSS		
	3.13	Subroutine MULTC		
	3.14	Subroutine SCAP		
	3.15	Subroutine INDUCT		
	3.16	Subroutine PHI		54

TABLE OF CONTENTS (Cont'd)

	3.17	Subroutine ADMADD	•		•	•	•	•	54
	3.18	Subroutine IMPADD	•		•	•	•		54
IV.	User'	s Manual	•					•	55
	4.1	Transmission Line Characterization Cards, Group	I			•	•	•	55
	4.2	Unshielded Wire Characteristics Cards, Group II	•		•		•		60
	4.3	Shielded Cable Characteristics Cards, Group III	(a)	•	•	•	•	•	60
	4.4	Pigtail Wire Characteristics Cards, Groups III(b)	and	I	ΙI	(c).	60
	4.5	The Terminal Characteristics Cards, Group IV .	•			•	•	•	60
	4.6	The Frequency and Reference Conductor Impedance	Cε	rds	;,				
		Group V	•		•	•	•		74
	4.7	Range of the Values of the Input Data	•		•	•	•	•	74
v.	Progr	am Checkout	•				•	•	76
VI.	Summa	ry	•		•	•	•	•	107
	Refer	ences			•	•	•	•	110
	APPEN	DIX A - SHIELD Program Listing			•		•	•	114
	APPEN	DIX B - Conversion of SHIELD to Single Precision						•	142
	A DD FN	INTY C - Flowchart of SHIFID							151

LIST OF ILLUSTRATIONS

Figure	2	Page
1-1	Braided-shield construction	2
1-2	Termination of braided-shield cables in connectors	4
1-3	Field-to-wire coupling involving shielded cables	9
1-4	Surfaces and contours for the derivation of the transmission-	
	line equations	11
1-5	Common impedance coupling	16
2-1	Illustration of the basic computational technique for	
	incorporation of pigtail sections	19
2-2	Definition of conductor currents and voltages	20
2-3	Derivation of the voltage change equation for a shielded cable .	21
2-4	Derivation of the current change equation for a shielded cable .	28
2-5	The terminal constraints of the line at $x = 0 \dots \dots$	39
4-1	The TYPE 1 Structure	58
4-2	The TYPE 2 Structure	59
5-1	The experimental configuration	, 78
5-2	Photographs of the experimental setup	,80
5-3	Input data for the experiment 82-	-86
5-4	Printout of the computed results for the experiment 87-	-96
5-5(a)	Magnitude of voltage transfer ratio to right end of ul	97
5-5(b)	Angle of voltage transfer ratio to right end of ul	98
5-6(a)	Magnitude of voltage transfer ratio to right end of sl, $\hat{w}l$	99
5-6(b)	Angle of voltage transfer ratio to right end of sl, wl	100
5-7(a)	Magnitude of voltage transfer ratio to right end of s2, ŵ2	101

LIST OF ILLUSTRATIONS (Cont'd)

Figure		Page
5-7(b)	Angle of voltage transfer ratio to right end of s2, $\hat{w}2$	102
5-8(a)	Magnitude of voltage transfer ratio to right end of s3, $\hat{w}3$	103
5-8(b)	Angle of voltage transfer ratio to right end of s3. w3	104

I. Introduction

Shielded cables have been used extensively on aircraft, ground and spacemissile systems to reduce the electromagnetic coupling (crosstalk) between
electrical equipments which are interconnected by wires. The wires which
interconnect these electrical and electronic devices are generally routed in
densely-packed, cable bundles. The unintentional electromagnetic coupling or
crosstalk between these wires may be of sufficient magnitude to degrade the
performance of the equipments which the wires interconnect. In order to reduce this level of crosstalk, shielded cables and twisted pairs of wires have
been employed.

In an earlier report [1], the prediction of crosstalk to braided-shield cables was investigated. The braided-shield cable consists of a circular, cylindrical shield which is composed of belts of wires, interwoven to provide flexibility and an interior wire (the shielded wire) located on the axis of the shield as shown in Fig. 1-1. The interior wire or shielded wire is of radius r_w and the shield has radius r_s . The shield thickness, t_s , is approximately equal to the diameter of the wires making up the braid which have radius r_b , i.e., $t_s = 2r_b$. The shielded cable usually has an overall, insulating jacket of thickness t_j , and the shield is woven in B belts of wires with a weave angle of θ_w as shown in Fig. 1-1. Each belt contains W wires. If the length of the shield is denoted by \mathbf{Z}_s , then each braid wire is of length $\mathbf{Z}_s/\cos\theta_w$. The medium internal to the shield and surrounding the interior, shielded wire is a dielectric with permittivity $\varepsilon = \varepsilon_r \varepsilon_v$ and permeability $\mu = \mu_v$ where the permittivity and permeability of free space are denoted by ε_v and μ_v , respectively.

In terminating a braided-shield cable, for example, at a connector, the

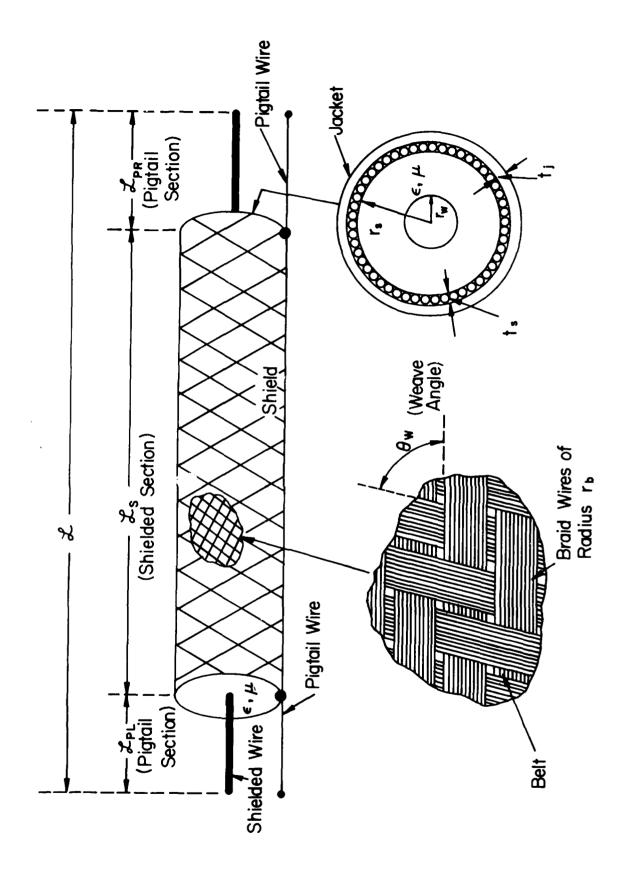


Figure 1-1. Braided-shield construction.

braid is often stripped back exposing the interior, shielded wire as shown in Fig. 1-1. The braid is terminated (usually to a ground plane such as an aircraft structural skin) via another wire which will be referred to as the pigtail wire. These exposed terminal sections will be referred to as pigtails throughout this report although this use of the term is not standard. The term pigtail is sometimes used elsewhere to denote the pigtail wire. The length of the left pigtail section will be denoted by \mathcal{L}_{pL} and that of the right section will be denoted by \mathcal{L}_{pR} . The total length of the cable is denoted as $\mathcal{L} = \mathcal{L}_{pL} + \mathcal{L}_{s} + \mathcal{L}_{pR}$.

When braided shield cables are terminated in connectors in this fashion, the shielded wire is directly exposed over the pigtail sections to other wires in the cable bundle which are also terminated at the connector as shown in Fig. 1-2. If it is desired to carry a shield connection through the connector, a separate wire, the pigtail wire, connects the shield braid to an additional connector pin. To avoid bunching of these shields at the connector, the pigtail sections at a connector are generally of different lengths. The various design handbooks [4,5,6] seem to recommend against using pigtail sections. It appears to be common nevertheless [7,8]. In fact the author has observed pigtail sections in excess of 6 inches.

It was shown previously [1,2] that the coupling over the pigtail sections may constitute the dominant coupling mechanism to the shielded wire. Even though the total length of the pigtail sections, $\mathcal{L}_{pL} + \mathcal{L}_{pR}$, may constitute only a minor fraction of the total cable length, it was shown in [1,2] that, depending on the values of the cable termination impedances, the contribution to the received voltages at either end of the cable (the voltages of the shielded wires) due to the pigtail sections can be larger than the contribution

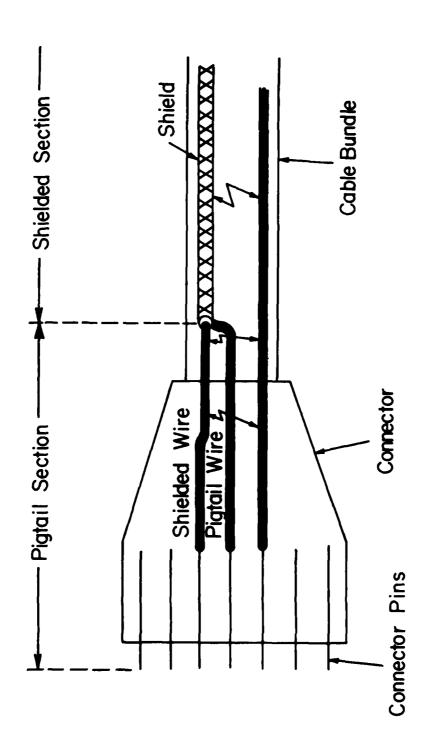


Figure 1-2. Termination of braided-shield cables in connectors.

over the (much longer) shielded section. In this situation, the shield simply serves to reduce the exposed length of the interior wire ($\mathbf{Z}_{pL} + \mathbf{Z}_{pR}$) from what it would be if no shield were present (\mathbf{Z}). Thus the shield still provides a reduction in crosstalk. However, it was shown in [1,2] that if the pigtail sections were eliminated, one could realize an additional reduction in crosstalk of as much as 30dB (over certain frequency ranges). Thus the effectiveness of the shield in reducing crosstalk can be substantially reduced by the pigtail sections.

An additional result shown in [1,3] was that the crosstalk to or from a braided-shield cable including the effects of pigtail sections could be predicted quite accurately with the multiconductor transmission line model (MTL) whose basic features are described in [9]. Certain other features of the coupling which are distributed parameter in nature could not be predicted with lumped circuit models. For example, it was shown in [1,2] that the coupling to a shielded cable in which only one end is grounded depended, in some cases, very strongly on which end of the shield was grounded. This is clearly a distributed parameter phenomenon, and the MTL model predicted this result quite accurately. In addition, it was shown in [2] that the coupling to a shielded wire may depend quite strongly on the orientation of the pigtail wires. Simple lumped models failed to predict these effects, whereas the MTL model predicted these results quite accurately.

In order to describe the coupling through cable shields we first consider a cable having a solid shield. The coupling from an exterior field to the interior, shielded wire for solid-shield cables is described by a surface transfer impedance, \mathbf{z}_{T} , per-unit-of cable length. For an infinitely long, solid, conducting cylinder, suppose the cylinder carries a total current I

directed in the axial (x) direction where $I = I_{in} + I_{out}$. The return path for I_{in} is within the cylindrical surface while the return path for I_{out} is outside the surface. The conducting cylinder has finite conductivity σ and therefore the current I flowing along the cylinder will induce electric fields on the inner and outer surfaces of the cylinder, E_{in} and E_{out} , respectively, which are directed in the axial direction of the cylinder. The currents and induced electric fields may be related as [10-13, 19, 22]

$$\begin{bmatrix} E_{in} \\ E_{out} \end{bmatrix} = \begin{bmatrix} z_{ii} & z_{io} \\ z_{oi} & z_{oo} \end{bmatrix} \begin{bmatrix} I_{in} \\ I_{out} \end{bmatrix}$$
 V/m (1-1)

The terms z and z may be thought of as per-unit-length self impedances of the surfaces:

$$z_{ii} = \frac{E_{in}}{I_{in}} \qquad \qquad \Omega/m \qquad (1-2a)$$

$$I_{out} = 0$$

whereas the terms \mathbf{z}_{io} and \mathbf{z}_{oi} are called surface transfer impedances (per-unit-length):

$$z_{io} = \frac{E_{in}}{I_{out}} \qquad \qquad \Omega/m \qquad (1-3a)$$

$$z_{oi} = \frac{E_{out}}{I_{in}} \qquad \qquad \Omega/m \qquad (1-3b)$$

These surface transfer impedances relate the current on one surface of the

cylinder to the induced field on the other surface.

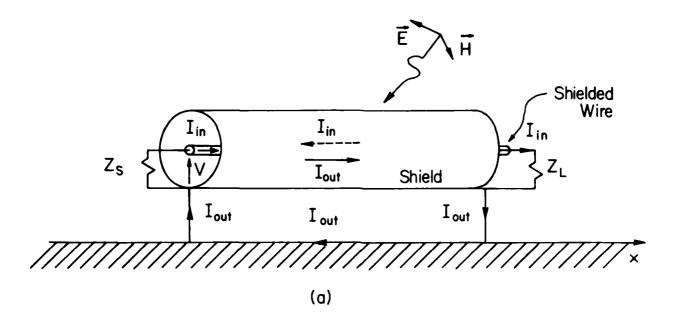
The two surface transfer impedances z_{io} and z_{oi} will be assumed to be equal and will be designated as z_{T} , i.e.,

$$z_{T} = z_{io} = z_{oi}$$
 (1-4a)

The self-impedances of the shield, z_{ii} and z_{oo} will also be taken to be the same and designated as $z_{\rm S}$, i.e.,

$$z_{S} \stackrel{\cong}{=} z_{ii} \stackrel{\cong}{=} z_{oo}$$
 (1-4b)

Certainly for cylinders with wall thicknesses which are sufficiently small, these / 1 be reasonable approximations. Thus (1-1) becomes


$$\begin{bmatrix} E_{in} \\ E_{out} \end{bmatrix} = \begin{bmatrix} z_{S} & z_{T} \\ z_{T} & z_{S} \end{bmatrix} \begin{bmatrix} I_{in} \\ I_{out} \end{bmatrix}$$
 (1-5)

The surface transfer impedance accounts for skin effect - the tendency for a current to concentrate on a conductor surface nearest its source. At D-C, any current flowing in the shield will tend to be uniformly distributed over the shield cross section. As the frequency is increased the current tends to concentrate towards the shield surfaces. Thus for increasing frequencies less current diffuses through the wall to induce an electric field on the opposite surface. In the limit as the frequency is increased without bound there is perfect isolation between the inner and outer walls of the shield. If the frequency is sufficiently small so that the shield thickness is less than a few skin depths, the surface transfer impedance is approximately equal to the impedance of the shield. In fact, the two should converge as the fre-

quency is reduced to zero. We will often refer to this surface transfer impedance, \mathbf{z}_{T} , for solid shields as the diffusion impedance and denote it as $\mathbf{z}_{\mathrm{d}} = \mathbf{z}_{\mathrm{T}}$ for the above reasons.

The surface transfer impedance represents the coupling of some field external to the cylinder to the field internal to the cylinder and occurs via diffusion through the finitely conducting shield. This surface impedance is employed to predict the coupling from some field incident on a coaxial cable to the loads connected to the end points of the coaxial cable in the following manner [19]. As an example, consider the coaxial cable above the ground plane shown in Fig. 1-3(a) The coaxial cable consists of a conducting cylinder and a concentrically-located, conducting wire. An incident field, such as a uniform plane wave, illuminates the cable and induces a current, I_{out} , flowing along the shield and returning through the ground plane. For the purposes of computing this induced current, I_{out} , it is universally assumed that the interior of the shield and, in particular, I_{in} have no effect on the external circuit [19]. In other words, I_{out} is traditionally calculated as simply the current induced on an isolated cylinder above ground. Thus we assume a unilateral effect - outside to inside - to simplify the calculations. Then the effect of this induced current, I and consequently the incident field, on the internal structure is manifested as a per-unit-length voltage source in the cable interior equal to $\mathbf{z}_{T}^{}\mathbf{I}_{out}^{}$ (V/m). The equivalent circuit representing a small, Δx section of the shield and interior, shielded wire is shown in Fig. 1-3(b).

The per-unit-length impedance of the interior wire is represented by $\mathbf{z}_{\mathbf{w}}$ and the per-unit-length inductance and capacitance of this $\Delta \mathbf{x}$ section of the line are represented by ℓ and \mathbf{c} , respectively. The current \mathbf{I}_{in} produces a

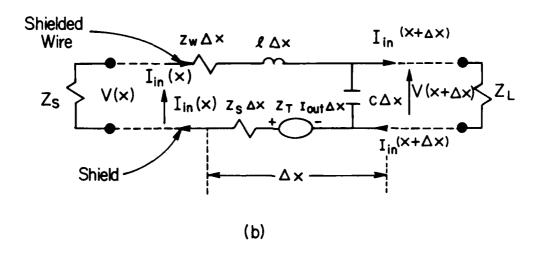
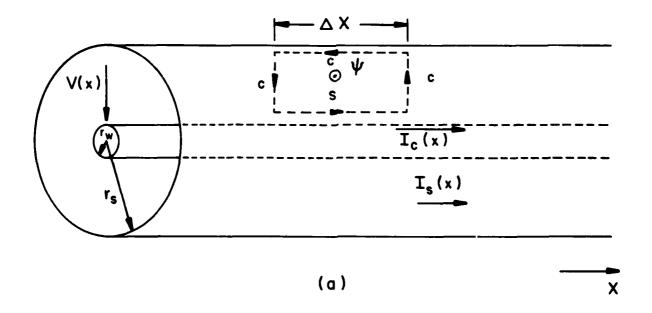


Figure 1-3. Field-to-wire coupling involving shielded cables.

voltage drop z_s Δx I_{in} along the interior surface of the shield as indicated by (1-1) and (1-2a), and the effect of the external shield current, I_{out} , induced by the incident field is represented by a voltage source z_T I_{out} Δx as indicated by (1-1) and (1-3a).

From the equivalent circuit in Fig. 1-3(b), we may derive the transmission line equations as [9]


$$\frac{dV(x)}{dx} = -(z_w + z_s + j\omega l) I_{in}(x) + z_T I_{out}(x)$$
 (1-6a)

$$\frac{\mathrm{d}I_{\mathrm{in}}}{\mathrm{dx}} = -\mathrm{j}\omega c \ V(x) \tag{1-6b}$$

Note that the effect of the incident field appears in these transmission line equations as a driving term, $\mathbf{z}_{\mathrm{T}}\mathbf{I}_{\mathrm{out}}$.

This is an example of the use of the surface transfer impedance for solid, cylindrical shields. For braided shields, additional coupling occurs via the small holes in the shield introduced by the overlapping, wire braid. This construction of the shield braid introduces small, diamond-shaped holes between the belts of wires. These holes allow other coupling mechanisms to occur between the outside environment and the interior, shielded wire which were not present for a solid shield. For the solid shield, the coupling from the exterior to the interior occurred only by diffusion through the metal. For the braided shield, additional inductive and capacitive coupling occur via the holes in the shield as discussed by Latham [15,16] and Vance [17].

Latham provided the following development. Suppose the braided shield and interior wire are perfectly conducting. Consider a small Δx section of the cable as shown in Fig. 1-4. Select a planar surface of length Δx between the interior wire and the shield as shown in Fig. 1-4(a). Faraday's law

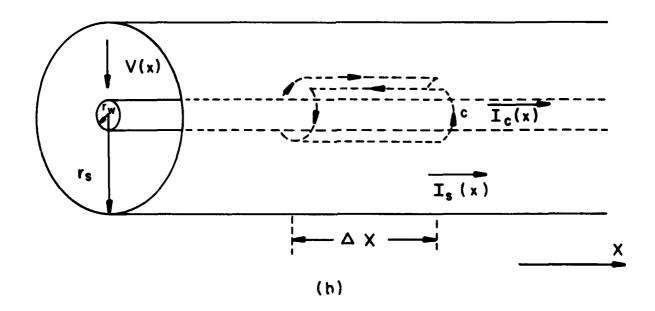


Figure 1-4. Surfaces and contours for the derivation of the transmission-line equations.

written around this contour is

$$\oint_{C} \vec{E} \cdot \vec{dl} = -j\omega\mu \int_{S} \vec{H} \cdot \vec{ds}$$

$$= -j\omega\psi$$
(1-7)

Write the flux through the surface as

$$\psi = \ell \Delta x I_C - \ell_T \Delta x I_S$$
 (1-8)

where $\mathbf{I}_{\mathbf{C}}$ is the total current carried by the interior wire and $\mathbf{I}_{\mathbf{S}}$ is the total current carried by the shield. Defining the voltage between the interior wire and the shield as

$$V(x) = -\int_{\text{shield}}^{\text{wire}} \vec{E} \cdot \vec{dl}$$
 (1-9)

we obtain

$$V(x + \Delta x) - V(x) = -j_{\omega}(\ell_{c}\Delta x I_{c} - \ell_{T}\Delta x I_{s})$$
 (1-10)

Dividing (1-10) by Δx and taking the limit as $\Delta x \rightarrow 0$ yields

$$\frac{dV(x)}{dx} = -j\omega \ell I_C(x) + j\omega \ell_T I_S(x)$$
 (1-11)

and

$$\ell = \frac{\mu}{4\pi} \ln \left(\frac{r_s}{r_s}\right) \tag{1-12}$$

is the per-unit-length self inductance of the cable where μ is the permeability of the interior medium. The quantity ℓ_T is the per-unit-length transfer inductance which is zero for solid, circular, cylindrical shields which have the interior wire on the axis of the shield. Holes in the shield as well as shields having a conducting direction not along the x axis (such as tape-wound) cause ℓ_T to be nonzero.

Similarly, consider Fig. 1-4(b). A closed surface is constructed around the interior wire. Writing Ampere's law for this surface

$$\oint_{C} \vec{H} \cdot \vec{dl} = j\omega\varepsilon \qquad \int_{S} \vec{E} \cdot \vec{ds} \tag{1-13}$$

we obtain

$$I_c(x + \Delta x) - I_c(x) = j\omega Q_c(x)$$
 (1-14)

where $\mathbf{Q}_{\mathbf{C}}$ is the total charge contained on the interior wire over $\Delta \mathbf{x}$. The charge on the interior wire and on the shield, $\mathbf{Q}_{\mathbf{S}}$, can be related to the voltage as

$$V \Delta x = s Q_c - s_T Q_s$$
 (1-15)

Solving (1-15) for $\mathbf{Q}_{_{\mathbf{C}}}$ and substituting into (1-14) we obtain as Δx + 0,

$$\frac{\mathrm{dI}_{c}(x)}{\mathrm{dx}} = - \mathrm{j}\omega \, \frac{1}{\mathrm{s}} \, \mathrm{V}(x) - \mathrm{j}\omega \, \frac{\mathrm{s}_{\mathrm{T}}}{\mathrm{s}} \, \mathrm{Q}_{\mathrm{s}}(x) \tag{1-16}$$

For a circular, cylindrical shield

$$s = \frac{1}{2\pi\epsilon} \ln \left(\frac{r_s}{r_w}\right) \tag{1-17}$$

The transfer elastance \mathbf{s}_T is due to the penetration of the electric field lines through the shield. The terms ℓ_T and \mathbf{s}_T are determined for braided shield cables in terms of the magnetic and electric polarizabilities of the holes in the braid [16].

Vance [16] has chosen to include the diffusion term in the voltage change expression for braided shields as was present for solid shields. For a braided shield, Vance assumed that all strands of the braid were connected, electrically, in parallel. For example, if there are B belts of wires, W wires

per belt and the braid is woven with a weave angle $\boldsymbol{\theta}_{\mathbf{w}}$, then the per-unit-length D-C resistance of the braid is

$$r_{DC} = \frac{1}{\pi r_b^2 \sigma B W \cos\theta_w} \Omega/m \qquad (1-18)$$

where \mathbf{r}_{b} is the radius of each strand and σ is the strand conductivity. Vance presumes that this braid impedance is modified with increasing frequency in the same manner as the solid cylinder. Thus the per-unit-length diffusion impedance, \mathbf{z}_{d} , is taken by Vance to be

$$z_{d} = r_{DC} \frac{\gamma d}{\sinh \gamma d} m$$
 (1-19)

where d is the diameter of the braid wires, $d=2r_b$, and $\gamma=(1+j)/\delta$ where $\delta=(\pi f \mu \sigma)^{-1/2}$ is the skin depth. The self impedance of each strand of the braid, z_s , is chosen here to be computed as the impedance of an isolated round wire. The total self impedance of the braid is then chosen as the impedance of all strands in parallel.

Comparing Fig. 1-3 and Fig. 1-4(a) we note that

$$I_{c} = I_{in}$$
 (1-20a)

$$I_s = I_{out} - I_{in}$$

or

$$I_{in} = I_{c} \tag{1-20b}$$

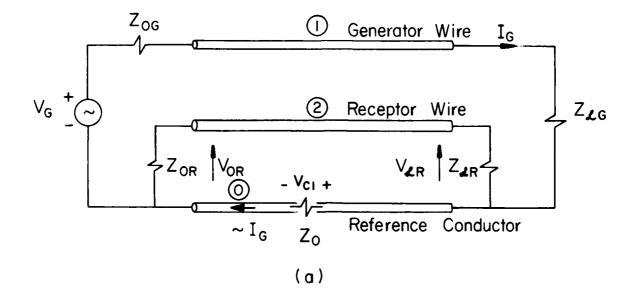
$$I_{out} = I_s + I_c$$

Substituting (1-20b) into (1-6) and adding the transfer inductance and transfer elastance we obtain

$$\frac{dV(x)}{dx} = -(z_{w} + z_{s} + j\omega \ell - z_{d}) I_{c}(x) + (z_{d} + j\omega \ell_{T}) I_{s}(x) (1-21a)$$

$$\frac{dI_{c}(x)}{dx} = -j\omega c V(x) - j\omega c s_{T} Q_{s}(x)$$
 (1-21b)

where the diffusion impedance is $\boldsymbol{z}_{\boldsymbol{d}}$ and the total transfer impedance for the braided shield now becomes


$$\mathbf{z}_{\mathrm{T}} = \mathbf{z}_{\mathrm{d}} + \mathrm{j}\omega \mathbf{l}_{\mathrm{T}} \,\Omega/\mathrm{m} \tag{1-22}$$

The purpose of this report is to extend the above concepts to multiconductor cables in which the individual wires may be unshielded or shielded
with solid or braided shields. The results will be incorporated into a
digital computer program, SHIELD, which may be used to predict crosstalk in
cables which have shielded wires. A description of the program is given in
Section III. A User's Manual is given in Section IV. The shields may have
pigtail sections as described previously. The pigtail section lengths need
not be the same. Two choices of reference conductor for the line voltages
are available. The cables may be over a ground plane or within an overall,
circular cylindrical shield.

The distributed impedances of all conductors due to their finite conductivities are included in the model. This allows the modeling of common impedance coupling as is illustrated in Fig. 1-5. Consider two wires and a reference conductor shown in Fig. 1-5(a). At a sufficiently small frequency, the current in the generator wire can be computed as

$$I_{G} \doteq \frac{V_{G}}{Z_{OG} + Z_{\mathcal{Z}G}} \tag{1-23}$$

The majority of this current passes through the reference conductor producing a voltage drop across the reference conductor total impedance Z_{Ω} , of

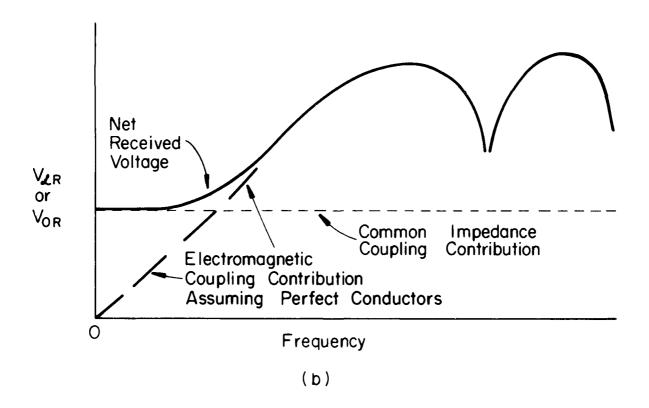


Figure 1-5. Common impedance coupling.

$$V_C \stackrel{\bullet}{=} Z_O I_G$$
 (1-24)

This common impedance voltage is then coupled directly to the receptor circuit producing voltages

$$V_{OR} = \frac{Z_{OR}}{Z_{OR} + Z_{LR}} V_{C}$$
 (1-25a)

$$V_{1R} = -\frac{Z_{1R}}{Z_{0R} + Z_{1R}} V_{C}$$
 (1-25b)

These low-frequency voltages produce a "floor" in the low-frequency cross-talk as shown in Fig. 1-5(b).

Each cable shield may be grounded to the reference conductor (via the pigtail wires) at one end, both ends or neither end. The lengths of each pigtail section on each shielded cable may be chosen by the user. For example, a shield may have no pigtail at one end and a pigtail at the other.

In section II, the derivation of the line equations is presented.

Comparisons of the code predictions with experimental data are provided in Section V. A listing of the code is given in the Appendix.

II. Derivation of the Line Equations

The basic technique is illustrated in Fig. 2-1. A line is shown for illustration in Fig. 2-1(a) as having 2 unshielded wires and 2 shielded cables having pigtail sections of various lengths. The line is divided into sections of uniform cross section. The chain parameter matrices ϕ_1 (which in this case are 12 x 12) are obtained for each section and the overall chain parameter matrix of the line, ϕ , is determined as the product (in the appropriate order) of the chain parameter matrices of the individual sections as described in [1]. Once the overall chain parameter matrix for the entire line is determined, the two terminal constraints are incorporated and the terminal voltages (and/or currents) of the line are determined. This is the essential technique involved in the program.

2.1 Shielded Section

First consider the case of u unshielded wires and s shielded cables (with no pigtail sections) as shown in Fig. 2-2. The line axis is the x-coordinate axis and the phasor conductor currents for sinusoidal steady-state excitation of the line are defined in the +x direction. The current in the reference conductor is the negative sum of these U + 2S conductor currents. U conductor currents, $I_{\hat{w}i}$, are defined for the unshielded wires and 2S currents, $I_{\hat{w}i}$ and I_{si} , are defined for the shielded cables as shown in Fig. 2-2. The phasor voltages of the U + 2S conductors, $V_{\hat{w}i}$, $V_{\hat{w}i}$ and V_{si} , are defined with respect to the reference conductor.

To facilitate deriving the line equations, it is convenient to redefine the voltages and currents of the shielded cables as shown in Fig. 2-3. The shielded wire voltage is defined as

$$\hat{\mathbf{v}}_{\hat{\mathbf{w}}\hat{\mathbf{i}}} = \hat{\mathbf{v}}_{\hat{\mathbf{w}}\hat{\mathbf{i}}} - \hat{\mathbf{v}}_{\hat{\mathbf{s}}\hat{\mathbf{i}}}$$
 (2-1)

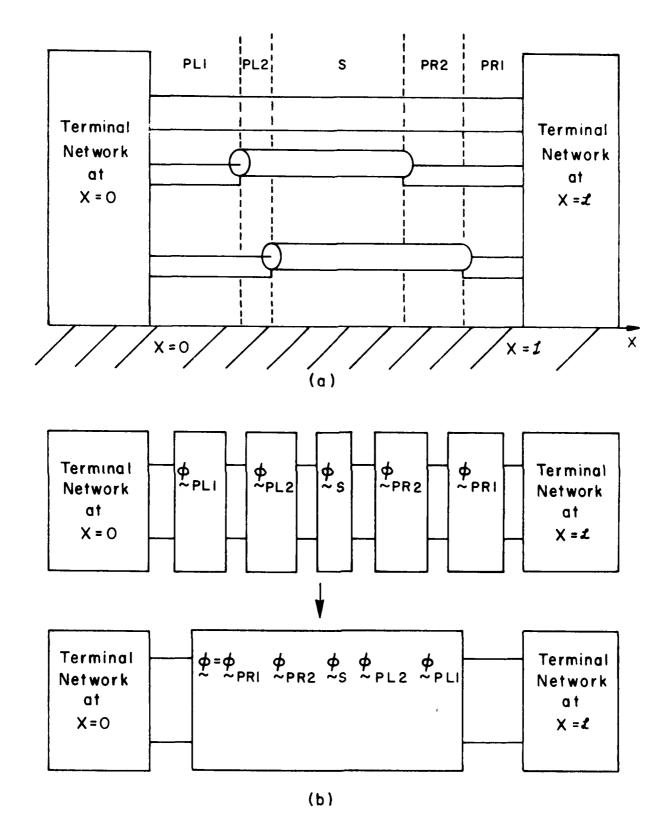
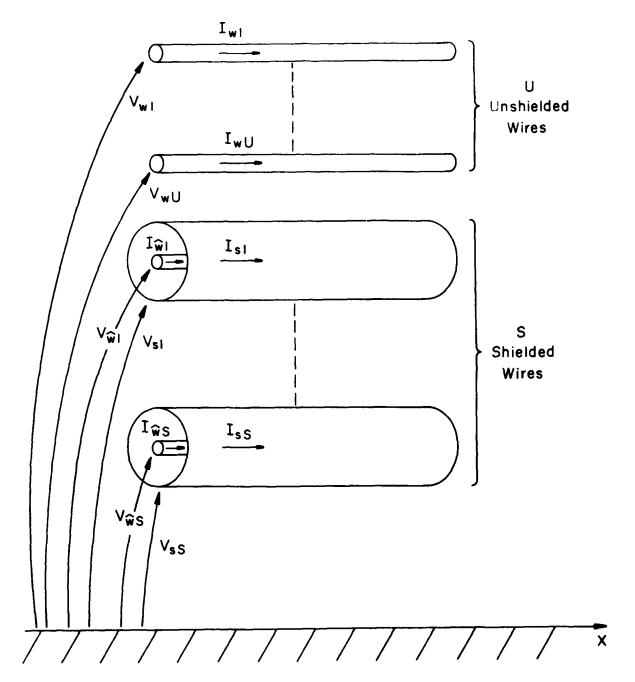



Figure 2-1. Illustration of the basic computational technique for incorporation of pigtail sections.

Reference Conductor
(Ground Plane or Overall Shield)

$$\sum_{i=1}^{\overline{U}} I_{wi} + \sum_{i=1}^{S} (I_{si} + I_{\widehat{w}i})$$

Figure 2-2. Definition of conductor currents and voltages.

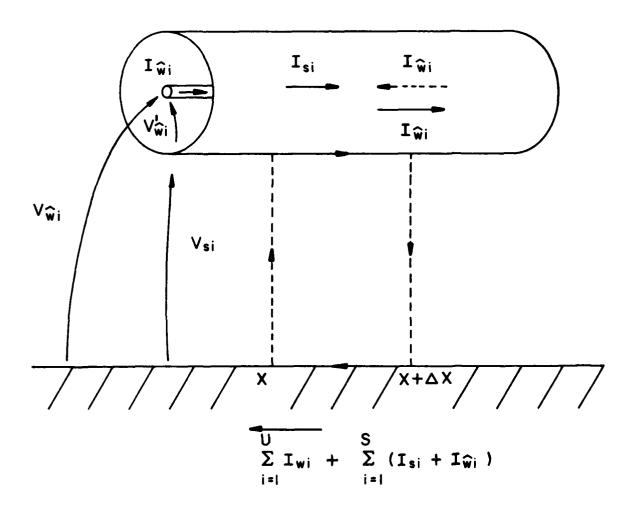


Figure 2-3. Derivation of the voltage change equation for a shielded cable.

and the voltage of the shield remains unchanged. The shielded wire currents are redefined such that a current in the shield has I_{si} and $I_{\hat{\omega}i}$ with a return exterior to the shield and $I_{\hat{\omega}i}$ with a return interior to the shield.

Defining a contour as shown in Fig. 2-3 between the shield and the reference conductor and between x and x+ Δx and writing Faraday's law around this contour we obtain, in the limit as $\Delta x \rightarrow 0$ [1],

$$\frac{dV_{si}}{dx} = -j\omega \psi_{si} - z_{si} \left(I_{si} + I_{\hat{\omega}i}\right) + z_{di} \left(I_{\hat{\omega}i}\right)$$

$$+ j\omega \ell_{Ti} I_{\hat{\omega}i}^{\hat{\omega}i} - z_{0} \left\{ \sum_{i=1}^{\Sigma} I_{\omega i} + \sum_{i=1}^{\Sigma} \left(I_{si} + I_{\hat{\omega}i}\right) \right\}$$

$$= -j\omega \ell_{Ti} I_{\hat{\omega}i}^{\hat{\omega}i} - z_{0} \left\{ \sum_{i=1}^{\Sigma} I_{\omega i} + \sum_{i=1}^{\Sigma} \left(I_{si} + I_{\hat{\omega}i}\right) \right\}$$

$$= -j\omega \ell_{Ti} I_{\hat{\omega}i}^{\hat{\omega}i} - z_{0} \left\{ \sum_{i=1}^{\Sigma} I_{\omega i} + \sum_{i=1}^{\Sigma} \left(I_{si} + I_{\hat{\omega}i}\right) \right\}$$

where ψ_{si} is the per-unit-length magnetic flux penetrating the surface bounded by the contour due to <u>all</u> currents in the system. This is determined by assuming the conductors are perfect conductors—and the shields are solid with no penetrations. The other per-unit-length quantities on the right-hand-side of (2-2) are the self impedance of the shield, z_{si} , the diffusion impedance of the shield z_{di} , the self impedance of the reference conductor z_{0} and the transfer inductance of the braided shield (due to holes in the braid) ℓ_{Ti} . If the shield is solid, ℓ_{Ti} is removed and z_{si} and z_{di} are changed.

The voltage change expression for the shielded wire voltage (with respect to the shield), $\hat{V_{\hat{\omega}i}}$, is obtained in a similar fashion:

$$\frac{dV_{\hat{\omega}i}}{dx} = -j\omega \psi_{\omega i} - z_{\hat{\omega}i} I_{\hat{\omega}i} - z_{si} I_{\hat{\omega}i} + z_{di} I_{\hat{\omega}i} + z_{di} I_{si}$$

$$+ j\omega \ell_{Ti} I_{\hat{\omega}i} + j\omega \ell_{Ti} I_{si}$$
(2-3)

Here $\psi_{\hat{\omega} \hat{\mathbf{i}}}$ is the per-unit-length magnetic flux penetrating a similar contour

between the shield and the shielded wire and between x and x+ Δx , and $z_{\hat{\omega}i}$ is the per-unit-length self impedance of the shielded wire. The other quantities are the same as for (2-2). Again, if the shield is solid rather than braided, ℓ_{Ti} is removed from this expression and z_{si} and z_{di} are changed.

With the relation in (2-1), the voltage change expression for $V_{\omega i}$ becomes

$$\frac{dV_{\hat{\omega}i}}{dx} = \frac{dV_{\hat{\omega}i}}{dx} + \frac{dV_{si}}{dx}$$

$$= -j\omega \left(\psi_{si} + \psi_{\hat{\omega}i}^{'}\right)$$

$$- \left(z_{si} - z_{di} - j\omega \ell_{Ti}\right) I_{si}$$

$$- 2\left(z_{si} - z_{di} - j\omega \ell_{Ti}\right) I_{\hat{\omega}i}$$

$$- z_{\hat{\omega}i} I_{\hat{\omega}i}$$

$$- z_{0} \left\{ \sum_{i=1}^{L} I_{\omega i} + \sum_{i=1}^{L} \left(I_{si} + I_{\hat{\omega}i}\right)\right\}$$

The voltage change expressions for the voltages with respect to the reference conductor of the unshielded wires are obtained in a similar fashion:

$$\frac{dV_{wi}}{dx} = -j\omega \psi_{\omega i} - z_{\omega i} I_{\omega i}$$

$$-z_0 \left\{ \sum_{i=1}^{\Gamma} I_{\omega i} + \sum_{i=1}^{\Gamma} (I_{si} + I_{\hat{\omega}i}) \right\}$$
(2-5)

The above equations can be placed in matrix form in the following manner. Define the $U \,+\, 2S$ vector of line voltages (all with respect to the reference conductor) as

$$\underline{V} = \begin{bmatrix} V_{w} \\ \underline{V}_{s} \\ \underline{V}_{\hat{w}} \end{bmatrix}$$
 (2-6)

where

$$\underline{V}_{w} = \begin{bmatrix} V_{w1} \\ \vdots \\ V_{wU} \end{bmatrix}$$

$$U$$

$$(2-7a)$$

$$V_{s} = \begin{bmatrix} V_{s1} \\ \vdots \\ V_{sS} \end{bmatrix}$$
 (2-7b)

$$\underline{V}_{\mathbf{w}} = \begin{bmatrix} V_{\mathbf{w}1} \\ \vdots \\ V_{\mathbf{w}S} \end{bmatrix}$$

$$(2-7c)$$

Write the vector of U + 2S line currents as

$$\underline{\mathbf{I}} = \begin{bmatrix} \underline{\mathbf{I}}_{\mathbf{w}} \\ \underline{\mathbf{I}}_{\mathbf{s}} \\ \underline{\mathbf{I}}_{\hat{\mathbf{w}}} \end{bmatrix}$$
 (2-8)

where

$$\underline{I}_{w} = \begin{bmatrix} I_{w1} \\ I_{wU} \end{bmatrix}$$

$$U$$
(2-9a)

$$\underline{I}_{S} = \begin{bmatrix} I_{S1} \\ \vdots \\ I_{SS} \end{bmatrix}$$
 S (2-9b)

$$\underline{I}_{\hat{\mathbf{w}}} \left[\begin{array}{c} \mathbf{I}_{\hat{\mathbf{w}}1} \\ \mathbf{I}_{\hat{\mathbf{w}}S} \\ \mathbf{I}_{\hat{\mathbf{w}}S} \end{array} \right] \right\} S \tag{2-9c}$$

Then equations (2-2), (2-4) and (2-5) become

$$\underline{\dot{\mathbf{v}}} = -\mathbf{j}\omega \,\,\underline{\psi} - \mathbf{Z}_{c}\,\underline{\mathbf{I}} - \mathbf{z}_{0}\,\,\underline{\mathbf{U}}\,\,\underline{\mathbf{I}} \tag{2-10}$$

where the dot denotes ordinary derivative with respect to \boldsymbol{x} and the (U + 2S) \boldsymbol{x}

(U + 2S) matrix Z is

$$Z_{c} = \begin{bmatrix} Z_{w} & 0 & 0 & 0 \\ -w & -w & -w & -w \\ 0 & Z_{s} & (Z_{s} - Z_{d} - j\omega L_{T}) \\ 0 & (Z_{s} - Z_{d} - j\omega L_{T}) & [2(Z_{s} - Z_{d} - j\omega L_{T}) + Z_{w}^{2}] \end{bmatrix}$$
(2-11)

The submatrices in (2-11) are diagonal with the main diagonal entries given by

$$\begin{bmatrix} Z \\ W \end{bmatrix}_{ii} = Z_{Wi}$$
 $i = 1, ---, U$ (2-12a)

$$\begin{bmatrix} z \\ zs \end{bmatrix}_{ii} = z_{si}$$
 $i = 1, ---, S$ (2-12b)

$$\begin{bmatrix} z_{d} \end{bmatrix}_{ii} = z_{di}$$
 $i = 1, ---, S$ (2-12c)

$$\begin{bmatrix} z_{\hat{w}} \end{bmatrix}_{ii} = z_{\hat{w}i}$$
 $i = 1, ---, S$ (2-12d)

$$[L_T]_{ii} = \ell_{Ti}$$
 $i = 1, ---, S$ (2-12e)

and all other entries are zero.

We denote the entry in the i-th row and j-th column of a matrix M by $\begin{bmatrix} M \\ ij \end{bmatrix}$. The matrix U is the $(U + 2S) \times (U + 2S)$ unity matrix with ones in every position:

$$U = \begin{bmatrix} 1 & 1 & 1 & ----- & 1 \\ 1 & 1 & 1 & ----- & 1 \\ \vdots & \vdots & \vdots & & \vdots \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 1 & 1 & ----- & 1 \end{bmatrix}$$
(2-13)

Once again, if the i-th shield is solid, ℓ_{Ti} is removed from L_{T} and z_{di} and z_{si} are computed for a solid shield.

The (U + 2S) vector $\underline{\psi}$ relates the per-unit-length magnetic fluxes passing between each conductor and the reference conductor to the line currents via the (U + 2S) x (U + 2S) per-unit-length inductance matrix $\underline{\mathbf{L}}$:

$$\underline{\psi} = L \underline{I} \tag{2-14}$$

where

$$\begin{bmatrix} L \end{bmatrix} = \ell_{ij} \tag{2-15}$$

for i, j = 1, ---, U+2S.

Computation of the entries in L are described in [1] and [24]. The self inductance of a shield is computed as though the shield were a solid wire. The mutual inductances between a shield and an unshielded wire are similarly computed. The only variation from this obvious scheme is the computation of the mutual inductance between a shield and its shielded wire. This is equivalent to the self inductance of the shield as described in [1]. The computation of the per-unit-length transfer inductances is described in [22,23].

The primary definition of the per-unit-length inductance matrix is

$$\begin{bmatrix} \underline{\psi}_{\mathbf{w}} \\ \underline{\psi}_{\mathbf{s}} \\ \underline{\psi}_{\hat{\mathbf{w}}} \end{bmatrix} = \begin{bmatrix} \underline{L}_{\mathbf{w}} & \underline{L}_{\mathbf{w}} & \underline{L}_{\hat{\mathbf{w}}} \\ \underline{L}_{\mathbf{s}} & \underline{L}_{\mathbf{s}} & \underline{L}_{\hat{\mathbf{w}}} \\ \underline{L}_{\hat{\mathbf{w}}} & \underline{L}_{\hat{\mathbf{w}}} & \underline{L}_{\hat{\mathbf{w}}} & \underline{L}_{\hat{\mathbf{w}}} \\ \underline{L}_{\hat{\mathbf{w}}} & \underline{L}_{\hat{\mathbf{w}}} & \underline{L}_{\hat{\mathbf{w}}} & \underline{L}_{\hat{\mathbf{w}}} \\ \underline{L}_{\hat{\mathbf{w}}} & \underline{L}_{\hat{\mathbf{w}}} & \underline{L}_{\hat{\mathbf{w}}} & \underline{L}_{\hat{\mathbf{w}}} \end{bmatrix} \begin{bmatrix} \underline{I}_{\mathbf{w}} \\ \underline{I}_{\mathbf{s}} \\ \underline{I}_{\hat{\mathbf{w}}} \end{bmatrix}$$

$$\underline{\underline{\Psi}}$$

$$\underline{\underline{U}}$$

where $\underline{\psi}_{\mathbf{W}}$ is a vector of per-unit-length magnetic flux passing between each wire and the reference conductor, $\underline{\psi}_{\mathbf{S}}$ is a vector of per-unit-length magnetic flux passing between each shield and the reference conductor, and $\underline{\psi}_{\widehat{\mathbf{W}}}$ is a vector of magnetic flux passing between each shielded wire and the reference conductor. From the definition in (2-16) one can easily obtain the entries in L [1]. With these definitions, the voltage change expression in (2-10) becomes

$$\underline{\dot{V}}(x) = - (Z_c + Z_o U + j\omega L) \underline{I}(x)$$
 (2-17)

It now remains to determine the second transmission-line equation - the current change expression.

The current change expressions are similarly computed. Essentially we need to relate the voltage of each conductor to the per-unit-length charge carried by that conductor. The per-unit-length charges and conductor voltages are defined in Fig. 2-4. These definitions are directly analogous to those for the line voltages and currents in Fig. 2-3. The shield carries per-unit-length charges q_{si} and q_{wi} on its outer surface and $-q_{wi}$ on its inner surface. Voltages V_{wi} , V_{wi} and V_{si} are defined as in Fig. 2-3.

The basic relationship is:

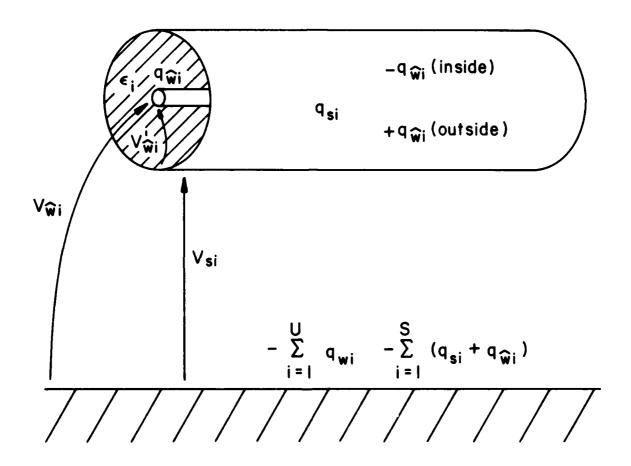


Figure 2-4. Derivation of the current change equation for a shielded cable.

$$\underline{V}_{w} = \underbrace{S}_{ww} \underline{q}_{w} + \underbrace{S}_{ws} \underline{q}_{s} + \underbrace{S}_{w\hat{w}} \underline{q}_{\hat{w}}$$

$$\underline{V}_{s} = \underbrace{S}_{sw} \underline{q}_{w} + \underbrace{S}_{ss} \underline{q}_{s} + \underbrace{S}_{s\hat{w}} \underline{q}_{\hat{w}}$$

$$\underline{V}_{\hat{w}} = \underbrace{S}_{\hat{w}w} \underline{q}_{w} + \underbrace{S}_{\hat{w}\hat{w}} \underline{q}_{s} + \underbrace{S}_{\hat{w}\hat{w}} \underline{q}_{\hat{w}}$$

$$(2-18)$$

where the vectors $\underline{V}_{\mathbf{w}}$, $\underline{V}_{\mathbf{s}}$, $\underline{V}_{\hat{\mathbf{w}}}$ are defined in (2-7) and

$$\underline{\mathbf{q}}_{\mathbf{w}} = \begin{bmatrix} \mathbf{q}_{\mathbf{w}1} \\ \vdots \\ \vdots \\ \mathbf{q}_{\mathbf{w}U} \end{bmatrix}$$

$$U \qquad (2-19a)$$

$$q_{s} = \begin{bmatrix} q_{s1} \\ \vdots \\ q_{sS} \end{bmatrix}$$
 (2-19b)

$$\underline{q}_{\hat{\mathbf{w}}} = \begin{bmatrix} q_{\hat{\mathbf{w}}1} \\ \vdots \\ \vdots \\ q_{\hat{\mathbf{w}}S} \end{bmatrix}$$
 S (2-19c)

In matrix notation, (2-18) becomes

$$\begin{bmatrix}
\underline{V}_{\mathbf{w}} \\
\underline{V}_{\mathbf{s}} \\
\underline{V}_{\mathbf{w}}
\end{bmatrix} = \begin{bmatrix}
\underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} \\
\underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{s}} & \underline{S}_{\mathbf{s}} \\
\underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} \\
\underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} \\
\underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} \\
\underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} \\
\underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} \\
\underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} \\
\underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} \\
\underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} \\
\underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} \\
\underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf{w}} \\
\underline{S}_{\mathbf{w}} & \underline{S}_{\mathbf$$

The current change expression is obtained by inverting (2-20) as

$$\underline{q} = \underline{S}^{-1} \underline{V}$$

$$= \underline{C} \underline{V}$$
(2-21)

where we denote the per-unit-length capacitance matrix as

$$C = S^{-1}$$
 (2-22)

Multiplying both sides of (2-21) by $j\omega$ we obtain

$$j\omega \underline{q}(x) = j\omega C \underline{V}(x)$$
 (2-23)

Defining

$$\underline{\dot{\mathbf{I}}}(\mathbf{x}) = -j\omega_{\mathbf{I}}(\mathbf{x}) \tag{2-24}$$

we obtain the current change expression

$$\underline{\underline{I}}(x) = -j\omega C \underline{V}(x)$$
 (2-25)

The holes in the braid of a braided shield cable introduce additional terms in S. We may treat the unshielded wires and shields of the cable as a set of U + S wires in a homogeneous medium (free space here) so that [1]

$$\begin{bmatrix} S & S \\ ww & ws \\ S & S \\ sw & ss \end{bmatrix} = \frac{1}{\mu_{v} \epsilon_{v}} \begin{bmatrix} L & L \\ ww & ws \\ L & L \\ sw & ss \end{bmatrix}$$
(2-26)

which is symmetric, i.e., $L_{ww} = L_{ww}^t$, $L_{ss} = L_{ss}^t$, $L_{ws} = L_{ws}^t$ and $L_{sw} = L_{ws}^t$ where we denote the transpose of a matrix M by M^t. That is, the upper left block of L in (2-16) are computed as though the shields comprise a set of isolated wires and $\underline{q}_{w} = \underline{0}$ in (2-20)

In order to determine the remaining entries in S, consider the definition of S in (2-20) and the voltage and charge definitions in Fig. 2-4. In (2-20) setting $\underline{\mathbf{q}}_{\mathbf{w}} = \underline{\mathbf{q}}_{\mathbf{S}} = 0$ we obtain from the first equation

$$\underline{\underline{V}}_{\mathbf{W}} = \underbrace{S}_{\mathbf{W}\hat{\mathbf{W}}} \underbrace{\mathbf{g}}_{\hat{\mathbf{W}}}$$

$$\underline{\mathbf{g}}_{\mathbf{W}} = \underline{\mathbf{g}}_{\mathbf{S}} = \underline{\mathbf{0}}$$

$$(2-27)$$

From Fig. 2-4, we clearly have

$$S_{ww} = S_{ws}$$
(2-28)

Similarly

$$\underline{\mathbf{v}}_{\mathbf{S}} = \mathbf{S}_{\mathbf{S}\hat{\mathbf{w}}} \underline{\mathbf{q}}_{\hat{\mathbf{w}}}$$

$$\underline{\mathbf{q}}_{\mathbf{U}} = \underline{\mathbf{q}}_{\mathbf{S}} = \underline{\mathbf{0}}$$
(2-29)

so that from Fig. 2-4 we have

$$S_{\hat{SW}} = S_{\hat{T}} + S_{\hat{T}} \tag{2-30}$$

The matrix S_T is diagonal and has the per-unit-length transfer elastances S_{Ti} as determined by Latham [15,16] on its main diagonal:

$$\begin{bmatrix} S_{T} \end{bmatrix}_{ii} = S_{Ti} \tag{2-31a}$$

$$\begin{bmatrix} \mathbf{S} \\ \mathbf{T} \end{bmatrix}_{\mathbf{i}\mathbf{j}} = 0 \tag{2-31b}$$

$$\mathbf{i} \neq \mathbf{j}$$

For the last block row of S we determine the entries $S_{\tilde{w}\tilde{w}}$, $S_{\tilde{w}\tilde{w}}$, $S_{\tilde{w}\tilde{w}}$, with the definitions in Fig. 2-4. For example, in terms of $\underline{V}_{\tilde{w}}$,

$$\underline{\mathbf{v}}_{\hat{\mathbf{w}}}^{\hat{\mathbf{s}}} = \mathbf{S}_{\hat{\mathbf{w}}\hat{\mathbf{w}}}^{\hat{\mathbf{s}}} \underline{\mathbf{q}}_{\hat{\mathbf{w}}} + \mathbf{S}_{\hat{\mathbf{w}}\hat{\mathbf{s}}}^{\hat{\mathbf{s}}} \underline{\mathbf{q}}_{\hat{\mathbf{s}}} + \mathbf{S}_{\hat{\mathbf{w}}\hat{\mathbf{w}}}^{\hat{\mathbf{s}}} \underline{\mathbf{q}}_{\hat{\mathbf{w}}}$$
 (2-32)

and

$$\underline{V}_{\hat{w}} = \underline{V}_{\hat{w}} + \underline{V}_{S} \tag{2-33}$$

So it remains to determine \hat{S}_{ww} , \hat{S}_{ws} , \hat{S}_{ww} . Setting $\underline{q}_{s} = \underline{q}_{w} = \underline{0}$ in (2-32) we have

$$\underline{\mathbf{v}}_{\hat{\mathbf{w}}} = \mathbf{s}_{\hat{\mathbf{w}}} \mathbf{g}_{\mathbf{w}}
\underline{\mathbf{q}}_{\mathbf{s}} = \underline{\mathbf{q}}_{\hat{\mathbf{w}}} = \underline{\mathbf{0}}$$
(2-34)

Thus

$$\hat{\mathbf{S}}_{\mathbf{w}\mathbf{w}} = 0 \tag{2-35}$$

(Actually S_{WW}^{\uparrow} is not zero due to penetrations for braided shields. But when added to S_{SW} according to (2-33), it is felt that this will be negligible compared to the entries in S_{SW} and is accordingly neglected.) Now

$$\underbrace{\mathbf{y}_{\hat{\mathbf{w}}}^{2} = \mathbf{y}_{\hat{\mathbf{w}}}^{2} \mathbf{q}_{\mathbf{s}}}_{\mathbf{g}} = \mathbf{q}_{\hat{\mathbf{w}}}^{2} = \mathbf{0}} \tag{2-36}$$

Here penetrations through braid holes probably should be included so that [15,16]

$$S_{\hat{W}S}^* = S_T \tag{2-37}$$

Similarly,

$$\underline{\mathbf{v}}_{\hat{\mathbf{w}}} = \mathbf{s}_{\hat{\mathbf{w}}\hat{\mathbf{w}}} \mathbf{q}_{\hat{\mathbf{w}}}$$

$$\underline{\mathbf{q}}_{\mathbf{w}} = \underline{\mathbf{q}}_{\mathbf{s}} = \underline{\mathbf{0}}$$

But this is simply the interior, self-elastances of each shielded cable [1]:

$$\left[\hat{s}_{ww}^{\hat{i}}\right]_{ii} = \frac{\ln(r_{si}/r_{wi})}{2\pi\epsilon_{i}}$$
 (2-39a)

$$\begin{bmatrix} \hat{\mathbf{s}} \hat{\mathbf{w}} \hat{\mathbf{w}} \end{bmatrix}_{\mathbf{i}\mathbf{j}} = 0 \tag{2-39b}$$

$$\mathbf{i} \neq \mathbf{j}$$

where \textbf{r}_{si} is the interior shield radius, $\textbf{r}_{\hat{\textbf{w}i}}$ is the radius of the shielded

wire and $\boldsymbol{\epsilon}_{\boldsymbol{i}}$ is the interior dielectric permittivity. Define

$$S_{INT} = S_{\hat{w}\hat{w}}$$
 (2-40)

With the above results and (2-33) we obtain

$$S_{ww}^{\wedge} = S_{sw} + S_{ww}^{\wedge}$$

$$= S_{sw}$$

$$= S_{sw}$$
(2-41a)

$$S_{\tilde{v}} = S_{\tilde{s}} + S_{\tilde{v}}$$

$$= S_{\tilde{s}} + S_{\tilde{t}}$$
(2-41b)

$$S_{\tilde{w}} = S_{\tilde{w}} + S_{\tilde{w}}$$

$$= S_{\tilde{w}} + S_{\tilde{w}}$$

$$= S_{\tilde{w}} + S_{\tilde{v}}$$

Thus

$$\tilde{S} = \begin{bmatrix}
\tilde{S}_{ww} & \tilde{S}_{ws} & \tilde{S}_{ws} \\
\tilde{S}_{ws}^{t} & \tilde{S}_{ss} & (\tilde{S}_{ss} + \tilde{S}_{T}) \\
\tilde{S}_{ws}^{t} & (\tilde{S}_{ss} + \tilde{S}_{T}) & (\tilde{S}_{ss} + \tilde{S}_{T} + \tilde{S}_{INT})
\end{bmatrix}$$
(2-42)

In order to show that this result is reasonable, suppose all shields are solid so that \tilde{S}_T = 0.

Then

$$S = \begin{bmatrix} S & S & S & S \\ -ww & -ws & -ws \end{bmatrix}$$

$$S = \begin{bmatrix} S & S & S & S \\ -ws & -ss & -ss \end{bmatrix}$$

$$S = \begin{bmatrix} S & S & S & S & S \\ -ws & -ss & -ss & -ss \end{bmatrix}$$

$$S = \begin{bmatrix} S & S & S & S & S & S \\ -ss & -ss & -ss & -ss & -ss \end{bmatrix}$$

$$S = \begin{bmatrix} S & S & S & S & S & S \\ -ss & -ss & -ss & -ss & -ss \end{bmatrix}$$

$$S = \begin{bmatrix} S & S & S & S & S & S \\ -ss & -ss & -ss & -ss & -ss \end{bmatrix}$$

$$S = \begin{bmatrix} S & S & S & S & S & S \\ -ss & -ss & -ss & -ss & -ss \end{bmatrix}$$

$$S = \begin{bmatrix} S & S & S & S & S & S \\ -ss & -ss & -ss & -ss & -ss & -ss \end{bmatrix}$$

$$S = \begin{bmatrix} S & S & S & S & S & S & S \\ -ss & -ss & -ss & -ss & -ss & -ss \end{bmatrix}$$

$$S = \begin{bmatrix} S & S & S & S & S & S & S \\ -ss & -ss & -ss & -ss & -ss & -ss \end{bmatrix}$$

$$S = \begin{bmatrix} S & S & S & S & S & S & S & S \\ -ss & -ss \\ -ss & -ss &$$

In order for the results to be reasonable for solid shields, the structure of the per-unit-length capacitance matrix C must be [1]

$$C = \begin{bmatrix} S_{ww} & S_{ws} \\ S_{ws}^{t} & S_{ss} \end{bmatrix} & 0 \\ 0 & C_{INT} & -C_{INT} \\ 0 & -C_{INT} & C_{INT} \end{bmatrix}$$
(2-44)

where

$$C_{INT} = S_{INT}^{-1} \tag{2-45}$$

is diagonal. The matrix in (2-44) can be inverted in block form using the results in [25]. Matching blocks in (2-43) we obtain

$$\begin{bmatrix} \mathbf{S}_{\mathbf{w}} & \mathbf{S}_{\mathbf{w}} \\ \mathbf{S}_{\mathbf{w}}^{\mathbf{t}} & \mathbf{S}_{\mathbf{s}} \\ \mathbf{S}_{\mathbf{w}}^{\mathbf{t}} & \mathbf{S}_{\mathbf{w}} \\ \mathbf{S}_{\mathbf{w}}^{\mathbf{t}} & \mathbf{S}_{\mathbf{w}} \\ \mathbf{S}_{\mathbf{w}}^{\mathbf{t}} & \mathbf{S}_{\mathbf{w}} \\ \mathbf{S}_{\mathbf{w}}^{\mathbf{t}} & \mathbf{S}_{\mathbf{s}} \\ \mathbf{S}_{\mathbf{w}}^{\mathbf{t}} & \mathbf{S}_{\mathbf{w}} \\ \mathbf{S}_{\mathbf{w}}^{\mathbf{t}} & \mathbf{S}_{\mathbf{w}}^{\mathbf{t}} \\ \mathbf{S}_{\mathbf{w}}^{\mathbf{t}}$$

which is true. The identity matrix is denoted by 1. Similarly

$$\begin{bmatrix} S_{ws} \\ S_{ss} \end{bmatrix} \stackrel{?}{=} - \begin{bmatrix} S_{ww} & S_{ws} \\ S_{ws} & S_{ss} \end{bmatrix} \begin{bmatrix} 0 \\ C_{-C_{1NT}} \end{bmatrix} \begin{bmatrix} C_{1NT} \end{bmatrix}^{-1}$$
(2-46b)

which is true. Also

$$\begin{bmatrix} S_{ws}^{t} & S_{ss} \end{bmatrix} \stackrel{?}{=} - \begin{bmatrix} C_{INT} \end{bmatrix}^{1} \begin{bmatrix} 0 & -C_{INT} \end{bmatrix} \begin{bmatrix} S_{ww} & S_{ws} \\ S_{ws}^{t} & S_{ss} \end{bmatrix}$$
(2-46c)

which is true. Finally

$$S_{ss} + S_{INT} \stackrel{?}{=} \left[C_{INT} \right]^{1} - \left[C_{INT} \right]^{1} \left[0 - C_{INT} \right] \left[S_{ws} \right]$$

$$S_{ss} + S_{INT} \stackrel{?}{=} \left[C_{INT} \right]^{1} - \left[C_{INT} \right]^{1} \left[0 - C_{INT} \right] \left[S_{ws} \right]$$

$$S_{ss} + S_{INT} \stackrel{?}{=} \left[C_{INT} \right]^{1} - \left[C_{INT} \right]^{1} \left[0 - C_{INT} \right] \left[S_{ws} \right]$$

$$S_{ss} + S_{INT} \stackrel{?}{=} \left[C_{INT} \right]^{1} - \left[C_{INT} \right]^{1} \left[0 - C_{INT} \right] \left[S_{ws} \right]$$

$$S_{ss} + S_{INT} \stackrel{?}{=} \left[C_{INT} \right]^{1} - \left[C_{INT} \right]^{1} \left[0 - C_{INT} \right] \left[S_{ws} \right]$$

$$S_{ss} + S_{INT} \stackrel{?}{=} \left[C_{INT} \right]^{1} - \left[C_{INT} \right]^{1} \left[S_{ws} \right]$$

$$S_{ss} + S_{INT} \stackrel{?}{=} \left[C_{INT} \right]^{1} - \left[C_{INT} \right]^{1} \left[S_{ws} \right]$$

which is also true. Thus we have shown that for solid shields, the result is reasonable.

The computation of the transfer elastances is described in [22,23]. The only remaining calculations are for S_{ww} , S_{ws} , S_{ss} . These are computed from the per-unit-length inductance matrix of the isolated system of U unshielded wires and S shields [1]:

$$\begin{bmatrix} S_{ww} & S_{ws} \\ S_{ws}^{t} & S_{ss} \end{bmatrix} = \frac{1}{\mu_{v} \epsilon_{v}} \begin{bmatrix} L_{ww} & L_{ws} \\ L_{ws}^{t} & S_{ss} \end{bmatrix}$$
(2-47)

2.2 Pigtail Sections

If a pigtail occurs over a section of line as illustrated in Fig. 2-1, certain entries of L and $Z_{\rm c}$ in (2-17) and $S_{\rm c}$ in (2-20) associated with the shield attached to the pigtail and its shielded wire are computed differently.

With regard to the entries in L, the pigtail wire is simply treated as another wire instead of a shield. Thus those entries associated with the shielded wire and the shield in L_{ss} , $L_{s\hat{w}}$, $L_{w\hat{w}}$, are simply computed as though the shielded wire and the pigtail wire are ordinary wires and one does not enclose the other. The self impedances of the shield in Z_s are now computed for the pigtail wire, and the corresponding entries in Z_d and L_T are zero.

A similar process applies to the entries in the per-unit-length elastance matrix S in (2-20). Those entries in $S_{\hat{w}\hat{w}}$, $S_{\hat{s}\hat{w}}$, $S_{\hat{w}\hat{w}}$, associated with the pigtail wire and its shielded wire are computed as though these were simply two wires with neither one enclosing the other.

2.3 The Chain Parameter Matrices of the Sections

Consider a typical uniform section of the line of length ${m Z}$. The transmission-line equations are

$$\underline{\dot{\mathbf{y}}}(\mathbf{x}) = - (\mathbf{z}_{\mathbf{c}} + \mathbf{z}_{\mathbf{0}} \mathbf{U} + \mathbf{j}\omega \mathbf{L})\underline{\mathbf{I}}(\mathbf{x})$$
 (2-48a)

$$\underline{\hat{\mathbf{I}}}(\mathbf{x}) = -\mathbf{j}\omega \ \mathbf{C} \ \underline{\mathbf{V}}(\mathbf{x}) \tag{2-48b}$$

we may compute the chain parameter representation of this uniform section of line [1]:

$$\begin{bmatrix} \underline{\mathbf{v}}(\mathbf{x}_{R}) \\ \underline{\mathbf{I}}(\mathbf{x}_{R}) \end{bmatrix} = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix} \begin{bmatrix} \underline{\mathbf{v}}(\mathbf{x}_{L}) \\ \underline{\mathbf{I}}(\mathbf{x}_{L}) \end{bmatrix}$$
(2-49)

where \mathbf{x}_{R} is the coordinate of the right end of the section, \mathbf{x}_{L} is the coordinate of the left end of the section and the section length is

$$\mathcal{Z} = x_R - x_L \tag{2-50}$$

We first compute the eigenvalues and eigenvectors of the product Y Z where

$$Y = j\omega C \qquad (2-51a)$$

$$Z = Z_{c} + z_{0}U + j\omega L \qquad (2-51b)$$

The (U + 2S) eigenvectors are arranged in a (U + 2S) x (U + 2S) matrix \tilde{T} such that

$$T^{-1} Y Z T = Y^2$$
 (2-52)

where γ^2 is a (U + 2S) x (U + 2S) diagonal matrix containing the eigenvalues of Y Z on its diagonal.

The entries in ϕ are then determined from [9] as

$$\phi_{11} = \frac{1}{2} Y^{-1} T \left[e_{x}^{\gamma} \mathbf{I} + e_{x}^{-\gamma} \mathbf{I} \right] T^{-1} Y$$
 (2-53a)

$$\phi_{12} = -\frac{1}{2} Y^{-1} T \gamma \left[e^{\gamma} I - e^{-\gamma} I \right] T^{-1}$$
 (2-53b)

$$\phi_{21} = -\frac{1}{2} T \left[e^{\gamma} - e^{-\gamma} \right] \gamma^{-1} T^{-1} Y$$
 (2-53c)

$$\phi_{22} = \frac{1}{2} T \left[e_{x}^{\gamma Z} + e_{x}^{-\gamma Z} \right] T^{-1}$$
 (2-53d)

The $(U + 2S) \times (U + 2S)$ diagonal matrix γ is the square root of γ^2 and the $(U + 2S) \times (U + 2S)$ diagonal matrices $e^{\gamma Z}$ and $e^{-\gamma Z}$ have entries $e^{\gamma Z}$ and $e^{-\gamma Z}$ on the main diagonals, respectively.

2.4 The Overall Chain Parameter Matrix of the Line

Once the chain parameter matrices of the sections are determined, the overall chain parameter matrix of the line is the product (in the appropriate order) of the individual chain parameter matrices of the sections as is illustrated in Fig. 2-1 [1].

2.5 Incorporating the Terminal Conditions

The final step in this process is the incorporation of the terminal conditions at the two ends of the line into the overall chain parameter matrix of the line of total length \mathbf{Z} in order to solve for the terminal voltages and/or currents of the line. The general terminal configuration is shown in Fig. 2-5. The terminal configuration at the right end, $\mathbf{x} = \mathbf{Z}$, is similar. Each unshielded wire and each shielded wire is connected to the reference conductor and each other by an admittance. A current source is also attached to each of these wires (and directed from the reference conductor to the wire). Each shield may be connected to the reference conductor via a short circuit or an open circuit.

In order to incorporate the terminal conditions, we first rearrange the overall chain parameter matrix of the line. At this stage, the overall chain parameter matrix of the line (which is the product of the individual chain parameter matrices of the sections) is of the form

$$\begin{bmatrix} \underline{\mathbf{v}}_{\mathbf{w}}(\mathbf{Z}) \\ \underline{\mathbf{v}}_{\mathbf{s}}(\mathbf{Z}) \\ \underline{\mathbf{v}}_{\hat{\mathbf{w}}}(\mathbf{Z}) \\ \underline{\mathbf{I}}_{\mathbf{w}}(\mathbf{Z}) \\ \underline{\mathbf{I}}_{\hat{\mathbf{w}}}(\mathbf{Z}) \end{bmatrix} = \begin{bmatrix} \underline{\mathbf{v}}_{\mathbf{w}}(0) \\ \underline{\mathbf{v}}_{\hat{\mathbf{s}}}(0) \\ \underline{\mathbf{v}}_{\hat{\mathbf{w}}}(0) \\ \underline{\mathbf{I}}_{\mathbf{w}}(0) \\ \underline{\mathbf{I}}_{\hat{\mathbf{w}}}(0) \\ \underline{\mathbf{I}}_{\hat{\mathbf{w}}}(0) \\ \underline{\mathbf{I}}_{\hat{\mathbf{w}}}(0) \end{bmatrix}$$

$$(2-54)$$

Rearrange the rows and columns of this matrix such that

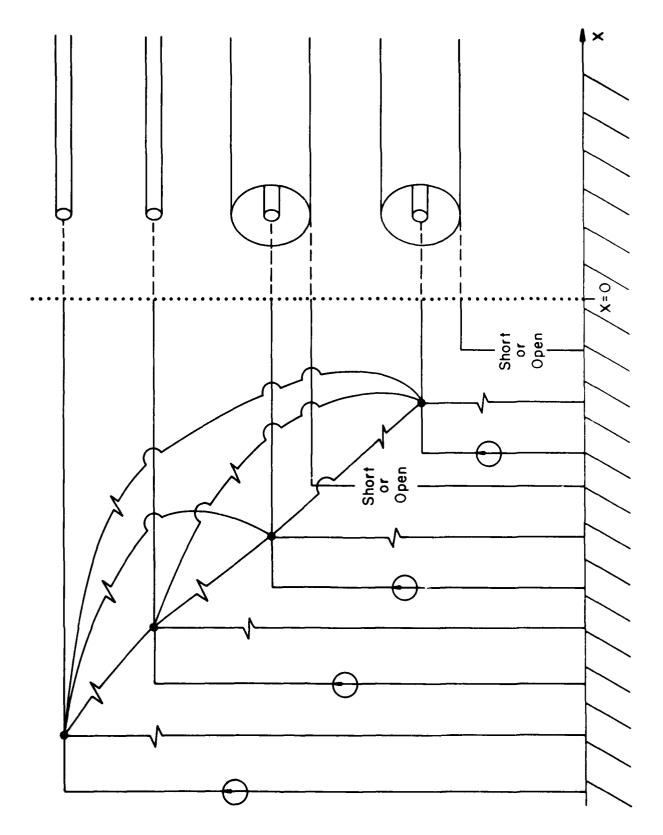


Figure 2-5. The terminal constraints of the line at x = 0.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \left[\begin{array}{c} V_{\mathbf{w}}(\mathbf{1}) \\ V_{\hat{\mathbf{w}}}(\mathbf{1}) \end{array} \right] \end{array} & \begin{array}{c} \psi_{11} & \psi_{12} & \psi_{13} & \psi_{14} \\ \vdots & \ddots & \ddots & \vdots \\ \left[\begin{array}{c} I_{\mathbf{w}}(\mathbf{1}) \\ I_{\hat{\mathbf{w}}}(\mathbf{1}) \end{array} \right] \end{array} & \begin{array}{c} \psi_{21} & \psi_{22} & \psi_{23} & \psi_{24} \\ \vdots & \ddots & \ddots & \vdots \\ \left[\begin{array}{c} V_{\mathbf{w}}(0) \\ V_{\hat{\mathbf{w}}}(0) \end{array} \right] \end{array} & \begin{array}{c} V_{\mathbf{w}}(0) \\ V_{\hat{\mathbf{w}}}(0) \end{array} & \begin{array}{c} V_{\mathbf{w}}(0)$$

In each vector, the first U + S entries contain the unshielded wire and shielded wire voltages. The next U + S entries contain the unshielded wire and shielded wire currents. The next S entries contain the shield voltages, $\frac{\tilde{V}}{S}$, for those shield terminations which are open and the shield currents, $\frac{\tilde{I}}{S}$, for the remaining shield terminations which are shorts. The next S zero vectors are constraints imposed by the zero shield voltages for those shields which are short-circuited and the remaining shield currents for those shields which are open-circuited.

Thus

$$\underline{\underline{v}}_{s}(\mathbf{Z}) = \begin{bmatrix} \underline{\tilde{v}}_{s}(\mathbf{Z}) \\ \underline{0} \\ \underline{\tilde{I}}_{s}(\mathbf{Z}) \end{bmatrix} \qquad \underline{\underline{v}}_{s}(0) = \begin{bmatrix} \underline{\tilde{v}}_{s}(0) \\ \underline{0} \\ \underline{0} \end{bmatrix}
\underline{\underline{I}}_{s}(0) = \begin{bmatrix} \underline{\tilde{I}}_{s}(0) \\ \underline{0} \end{bmatrix}$$

$$(2-56)$$

For the general terminal configuration in Fig. 2-5 we may write a generalized Norton equivalent representation relating the unshielded wire and shielded wire currents and voltages:

$$\begin{bmatrix} \underline{\mathbf{I}}_{\mathbf{w}}(0) \\ \underline{\mathbf{I}}_{\hat{\mathbf{w}}}(0) \end{bmatrix} = - \underbrace{\mathbf{Y}}_{0} \begin{bmatrix} \underline{\mathbf{V}}_{\mathbf{w}}(0) \\ \underline{\mathbf{V}}_{\hat{\mathbf{w}}}(0) \end{bmatrix} + \underline{\mathbf{I}}_{SO}$$
 (2-57)

The main-diagonal entries of Y_0 are the sum of all the admittances connected to the corresponding wire while each off-diagonal entry is the negative of the admittance connected between the appropriate wires. This is the usual nodal admittance matrix of lumped-circuit theory. The entries in \underline{I}_{S0} are the values of the appropriate current sources connected to each wire. The constraint at $x = \mathbf{Z}$ is similar:

$$\begin{bmatrix} \underline{\mathbf{I}}_{\mathbf{w}}(\mathbf{Z}) \\ \underline{\mathbf{I}}_{\hat{\mathbf{w}}}(\mathbf{Z}) \end{bmatrix} = \mathbf{Y}_{\mathbf{x}} \begin{bmatrix} \underline{\mathbf{v}}_{\mathbf{w}}(\mathbf{Z}) \\ \underline{\mathbf{v}}_{\hat{\mathbf{w}}}(\mathbf{Z}) \end{bmatrix} - \underline{\mathbf{I}}_{\mathbf{S}}\mathbf{Z}$$
(2-58)

Substituting (2-57) and (2-58) into (2-55) we obtain

$$\begin{bmatrix} (\psi_{12} Y_{0}^{-} - \psi_{11}) & 1 & -\psi_{13} & 0 \\ (\psi_{22} Y_{0}^{-} - \psi_{21}) & Y & -\psi_{23} & 0 \\ (\psi_{22} Y_{0}^{-} - \psi_{21}) & Y & -\psi_{23} & 0 \\ (\psi_{42} Y_{0}^{-} - \psi_{41}) & 0 & -\psi_{43} & 0 \\ (\psi_{32} Y_{0}^{-} - \psi_{41}) & 0 & -\psi_{43} & 0 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 1 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 1 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 1 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 1 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 1 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 1 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 1 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 1 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 1 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 1 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 1 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 1 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 1 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 1 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 1 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 1 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 1 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 1 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 0 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 0 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 0 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 0 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 0 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 0 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 0 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 0 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 0 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 0 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{33} & 0 \\ (\psi_{32} Y_{0}^{-} - \psi_{31}) & 0 & -\psi_{32} & -\psi_{32$$

Equations (2-59) may be reduced by noting that the last set of equations may be separated from the first three.

Thus

$$\begin{bmatrix} \frac{\tilde{\mathbf{v}}_{\mathbf{s}}(\mathbf{1})}{\tilde{\mathbf{I}}_{\mathbf{s}}(\mathbf{1})} \end{bmatrix} = -(\psi_{32}^{\mathsf{v}}_{0}^{\mathsf{v}}^{-\psi}_{31}) \begin{bmatrix} \underline{\mathbf{v}}_{\mathbf{w}}(0) \\ \underline{\mathbf{v}}_{\mathbf{w}}(0) \end{bmatrix} + \psi_{33} \begin{bmatrix} \frac{\tilde{\mathbf{v}}_{\mathbf{s}}(0)}{\tilde{\mathbf{I}}_{\mathbf{s}}(0)} \end{bmatrix} + \psi_{32} \underline{\mathbf{I}}_{S0}$$
(2-60b)

These may again be simplified. The first set of equations in Equation (2-60a) may be solved for

$$\begin{bmatrix} \underline{\mathbf{v}}_{\mathbf{w}}(\mathbf{z}) \\ \underline{\mathbf{v}}_{\hat{\mathbf{w}}}(\mathbf{z}) \end{bmatrix} = -(\psi_{12}^{\mathbf{v}}_{0}^{\mathbf{v}} - \psi_{11}) \begin{bmatrix} \underline{\mathbf{v}}_{\mathbf{w}}(0) \\ \underline{\mathbf{v}}_{\hat{\mathbf{w}}}(0) \end{bmatrix} + \psi_{13} \begin{bmatrix} \underline{\tilde{\mathbf{v}}}_{\mathbf{s}}(0) \\ \underline{\tilde{\mathbf{I}}}_{\mathbf{s}}(0) \end{bmatrix} + \psi_{12} \underline{\mathbf{I}}_{\mathbf{S}0}$$
(2-61)

Substituting into the last two sets of equations in (2-60a) yields the only simultaneous set of equations which need be solved:

$$\begin{array}{c}
U+S \left\{ \begin{bmatrix} (\psi_{2}2_{\sim}^{Y}0^{-\psi}21^{-Y}\chi\psi_{1}2_{\sim}^{Y}0 & + & Y\chi\psi_{1}1) & (Y\chi\psi_{1}3^{-\psi}23) \\ ----- & ---- & ---- & ---- \\ S \left\{ \begin{bmatrix} (\psi_{2}2_{\sim}^{Y}0^{-\psi}21^{-Y}\chi\psi_{1}2_{\sim}^{Y}0 & + & Y\chi\psi_{1}1) & (Y\chi\psi_{1}3^{-\psi}23) \\ ------ & ----- & ----- & ----- \\ \frac{\tilde{V}}{\tilde{V}_{s}}(0) & -\frac{\tilde{V}}{\tilde{V}_{s}}(0) \\ \tilde{I}_{s}(0) \end{bmatrix} = \begin{bmatrix} \tilde{I}_{s}\chi + & (\psi_{2}2\chi_{1}) & \tilde{I}_{s}\chi_{1} \\ --\chi\chi\psi_{1}2 & \tilde{I}_{s}\chi_{1} & -\chi\chi_{1}2 & \tilde{I}_{s}\chi_{1} \\ --\chi\chi\psi_{1}2 & \tilde{I}_{s}\chi_{1} & \tilde{I}_{s}\chi_{1} \\ --\chi\chi_{1}2 & \tilde{I}_{s}\chi_{1} & \tilde{I}_{s}\chi_{1} & \tilde{I}_{s}\chi_{1} & \tilde{I}_{s}\chi_{1} \\ --\chi\chi_{1}2 & \tilde{I}_{s}\chi_{1} & \tilde{I}_{s}\chi_{1} & \tilde{I}_{s}\chi_{1} \\ --\chi\chi_{1}2 & \tilde{I}_{s}\chi_{1} & \tilde{I}_{s}\chi_{1} & \tilde{I}_{s}\chi_{1} & \tilde{I}_{s}\chi_{1} \\ --\chi\chi_{1}2 & \tilde{I}_{s}\chi_{1} & \tilde{I}_{s}\chi_{1} & \tilde{I}_{s}\chi_{1} & \tilde{I}_{s}\chi_{1} \\ --\chi\chi_{1}2 & \tilde{I}_{s}\chi_{1} & \tilde{I}_{s}\chi_{1} & \tilde{I}_{s}\chi_{1} & \tilde{I}_{s}\chi_{1} & \tilde{I}_{s}\chi_{1} \\ --\chi\chi_{1}2 & \tilde{I}_{s}\chi_{1} &$$

Once the U + 2S equations in (2-62) are solved for the terminal voltages at x = 0, $\underline{V}_{w}(0)$ and $\underline{V}_{\hat{w}}(0)$, the terminal voltages at $x = \mathbf{Z}$, $\underline{V}_{w}(\mathbf{Z})$ and $\underline{V}_{\hat{w}}(\mathbf{Z})$, are obtained directly from (2-61).

III. Description of The Program

The contents and operation of the code will be described in this chapter. The cards (lines) in the program deck are sequentially numbered in columns 73-80 with the word SHLD in 73-76 and the card number in 77-80. The program is written in Fortran IV language and is double precision. A listing of the program is contained in Appendix A. Steps required to convert the program to single precision are given in Appendix B and a flow chart is given in Appendix C. In this flow chart, the numbers on the left and right of the individual boxes denote the beginning and ending card numbers of the corresponding portion of the code listing, respectively. The program was implemented on an IBM 370/165 digital computer at the University of Kentucky using the WATFIV compiler, and the single precision version should be implementable on other computers. The program requires certain function subprograms and subroutines which will be described in this chapter and are supplied with the main program. In addition, the program requires two subroutines from the IMSL (International Mathematical and Statistical Library) package [26]. The first of these subroutines, LEQTIC, solves a set of simultaneous, complex equations and the other, EIGCC, determines the eigenvalues and eigenvectors of a general, complex matrix. Any other general purpose subroutines of this type may be used. See [27] for a description of LEQTIC and EIGCC and their argument lists.

3.1 Main Program Description

Cards 1-37 contain comments concerning the general applicability of the program. Cards 38-113 contain array dimensions and type declarations. The total number of unshielded wires is NU and the total number of shielded cables is NS. Certain combinations of these variables which are used in examples of

dimensioning are given in cards 48-53. Either NU or NS may be chosen by the user to be zero. However, if either is chosen to be zero, certain dimensions must be set to 1 and not zero. See cards 85 and 97.

Cards 114-116 define two common blocks used to transfer certain constants. Cards 117-135 define certain constants. Most of these are obvious. Constant CMTM = 2.54D-5 when multiplied by a dimension given in mils (.001 inch) converts that dimension to meters. The quantity RADEG = ONE80/PI converts radians to degrees, and V = 2.997925D8 is the velocity of light in free space. ERTE is the permittivity of free space.

Cards 136-342 read the input data concerning dimensions and properties of the line conductors as well as lengths of pigtail sections and properties of the shields. The reader is referred to the next chapter - user's manual - for a definition of these input parameters. Cards 344-517 read the terminal admittance, current source and shield grounding data.

Cards 519-561 read the frequency (F), the reference conductor impedance (ZG) and compute the self impedances of the unshielded wires (array ZWWV), the self impedances of the pigtail wires on the left end (array ZWPLV) and right end (array ZWPRV) of the line, the self impedances of the shields (array ZSV), the diffusion impedances of the shields (array ZDV), the transfer inductances of the shields (array LTV) and the transfer elastances of the shields (array STV).

Cards 563-633 compute the overall chain parameter matrix of the pigtail sections on the right end of the line. Card 570 stores the lengths of the right pigtail sections (array LPR) into array LPT. Cards 573-576 initialize the overall chain parameter matrix of the right end to the identity matrix. Cards 578-588 determine the length of the first (rightmost) pigtail section

(variable LMINR) as well as the longest pigtail section, LMAXR, and initialize the entries in array KEY to indicate whether a shielded cable is shielded over this section (KEY=1) or has a pigtail over this section (KEY=2). Array KEY is the key to keeping this information sorted out. Card 589 calls subroutine INDUCT which computes the per-unit-length inductance matrix, L. Card 593 computes $Z = j\omega L + z U$ as in (2-17). Card 596 adds the self impedances of the unshielded wires. (See equation (2-11). Matrix Z_w is added to the above.) Subroutine IMPADD is called in card 598 to add the remaining self and diffusion impedances, z_s and z_d , the self impedances of the shielded wires, $z_{\hat{w}}$, as well as the transfer inductances $\mathbf{L}_{\mathbf{T}}$ to complete the formation of (2-11) and thus Z. Card 599 calls subroutine SCAP which forms the per-unit-length elastance matrix of the unshielded wire, shield system; that is, equation (2-42) without $_{zT}^{S}$ and $_{zINT}^{S}$. Subroutine ADMADD in card 600 adds $_{zT}^{S}$ and $_{zINT}^{S}$ to this result to complete the formation of S in (2-42). Cards 601-605 compute S^{-1} (and stores S⁻¹ in array TI). Cards 607-610 compute Y = $j\omega C = j\omega S^{-1}$ and Y⁻¹. Subroutine MULTC forms the product YZ in card 611 and stores in array TI, and subroutine EIGCC computes the eigenvectors of YZ (stores in array T) and eigenvalues, γ^2 , (stores in array GAM). Cards 613-618 compute T⁻¹ and cards 619-620 compute y and stores in array GAM. In card 621, subroutine PHI computes the chain parameter matrix of this section (stored in array PHIT) and MULTC forms the product of PHIT and the previously stored (accumulated) chain parameter matrix of the right pigtail section, PHIR, and stores in array TPHI. Cards 623-625 store TPHI in array PHIR. Array PHIR thus is a "running" accumulation of products of the chain parameter matrices of these individual sections of the right pigtails. Cards 626-627 subtract the length of the present pigtail section, LMINR, from each of the right pigtail section lengths and redefines

them in array LPT. The code returns to statement 117 (card 577) and continues again through this section unless there are no nonzero pigtail section lengths for this pass. Card 581 checks for this condition and when no nonzero pigtail section lengths remain, the code goes to statement 132 (card 630) and begins processing the left pigtail sections in an identical manner. At this point the overall chain parameter matrix of the entire right pigtail section is stored in PHIR.

Cards 634-704 process the left pigtail sections in an identical fashion as for the right pigtail sections and stores the overall chain parameter matrix in array PHIL.

Cards 705-747 compute the chain parameter matrix for the shielded section (a section with no pigtails in the interior of the line) and stores it in TPHI. Card 748 computes the product TPHI * PHIL and stores in PHIT and card 749 then computes PHIR * PHIT = PHIR*TPHI*PHIL and stores in TPHI. At this stage, TPHI in card 749 contains the overall chain parameter matrix of the entire line and it remains to incorporate the terminal conditions.

If the line should contain only unshielded wires, the code bypasses the above pigtail and shield calculations and computes the chain parameter matrix directly in cards 751-786 and stores in TPHI.

Cards 788-859 rearrange the overall chain parameter matrix rows and columns as described in section 2.5. Once this is completed, the terminal conditions are incorporated into this rearranged chain parameter matrix in cards 860-909, and equation (2-62) is formed. This is solved in card 910 and equations (2-61) are formed in cards 911-924. Array EP contains

$$\begin{bmatrix} \underline{\mathbf{v}}_{\mathbf{w}}(0) \\ \underline{\mathbf{v}}_{\hat{\mathbf{w}}}(0) \end{bmatrix}$$

from equation (2-62) and array EN contains

$$\begin{bmatrix} \underline{\mathbf{v}}_{\mathbf{w}}(\mathbf{z}) \\ \underline{\mathbf{v}}_{\hat{\mathbf{w}}}(\mathbf{z}) \end{bmatrix}$$

from equation (2-61).

Cards 925-962 compute the magnitudes and angles of these terminal voltages of the unshielded and shielded wires and print the results.

3.2 Function Subprogram LS1

Cards FLS10001-FLS10014 contain a function subprogram for computing the per-unit-length self inductances of wires above a ground plane. For a wire of radius r_{wi} at a height of y_i above ground, the result is [9,24]

LS1 =
$$\frac{\mu_v}{2\pi}$$
 in $(\frac{2y_i}{r_{wi}})$ H/m

3.3 Function Subprogram LM1

Cards FLM10001-FLM10017 contain a function subprogram for computing the per-unit-length mutual inductances between two wires above a ground plane. For two wires at heights y_i and y_j and horizontal coordinates z_i and z_j , the result is [1,9,24]

$$LM1 = \frac{\mu_{\mathbf{v}}}{2\pi} \ln \left[1 + \frac{4y_{\mathbf{i}}y_{\mathbf{j}}}{d_{\mathbf{i}\mathbf{j}}} \right] H/m$$

where

$$d_{ij} = \sqrt{(y_i - y_j)^2 + (z_i - z_j)^2}$$

3.4 Function Subprogram LS2

Cards FLS20001-FLS20014 contain a function subprogram for computing the per-unit-length self inductances of wires within an overall, circular,

cylindrical shield. For an overall shield of interior radius R and a wire of radius r_{wi} located r_{i} from the axis of the shield, the result is [9,24]

LS2 =
$$\frac{\mu_{\mathbf{v}}}{2\pi} \ln \left[\frac{R^2 - r_{\mathbf{i}}^2}{R r_{\mathbf{w}i}} \right]$$
 H/m

3.5 Function Subprogram LM2

Cards FLM20001-FLM20019 contain a function subprogram for computing the per-unit-length mutual inductances between wires within an overall, circular, cylindrical shield. For an overall shield with interior radius R and wires which are at radii $\mathbf{r_i}$ and $\mathbf{r_j}$ from the axis of the shield and separated by angle $\mathbf{\theta_{ij}}$, the result is [9,24]

$$LM2 = \frac{\mu_{v}}{2\pi} \ln \left\{ \frac{r_{j}^{2}}{(-R_{i}^{2})^{2}} \left[\frac{(r_{i}r_{j})^{2} + R_{i}^{4} - 2r_{i}r_{j}R^{2}\cos(\theta_{ij})}{(r_{i}r_{j})^{2} + r_{j}^{4} - 2r_{i}r_{j}\cos(\theta_{ij})} \right] \right\} H/m$$

3.6 Function Subprogram STB

Cards FSTB0001-FSTB0073 contain a function subprogram for computing the per-unit-length transfer elastances for braided shields which are entires in S_T in equation (2-42). A table of values of this parameter for discrete values of braid weave angle for angles less than or equal to 45° is given in [22]. An interpolation routine described in [23] is used to interpolate this table.

3.7 Function Subprogram LTB

Cards FLTB0001-FLTB0073 is a function subprogram for computing the per-unit-length transfer inductances for braided shields which are entries in $L_{\rm T}$ in equation (2-11). A table of values of this parameter for discrete values of braid weave angle for angles less than or equal to 45° is given in [22]. An interpolation routine described in [23] is used to interpolate this table.

3.8 Function Subprogram ZWW

Cards FZWW0001-FZWW0027 contain a function subprogram for computing the per-unit-length self impedances of stranded wires. The per-unit-length self impedance of one strand is determined, z_{ST} , and the NST strands are treated as being connected in parallel so that the total per-unit-length self impedance of the stranded wire is ZWW = $z_{ST}/NST \ \Omega/m$. The programmed equations are described in [1,27]. For a solid cylinder of radius r_w and conductivity σ , the skin depth is

$$\delta = \frac{1}{\sqrt{\pi f \mu_{V} \sigma}}$$

$$= \frac{1}{2\pi \sqrt{\sigma f \times 10^{-7}}}$$

the D-C per-unit-length resistance is

$$r_{DC} = \frac{1}{\pi c r_{U}^{2}}$$
 Ω/m

and the D-C per-unit-length internal inductance is

$$\ell_{DC} = \frac{\mu_{V}}{8\pi}$$

$$= .5 \times 10^{-7}$$
H/m

Including skin effect, the programmed equations are [1,27]

(I)
$$r_{w} \leq \delta$$

$$r = r_{DC} \quad \Omega/m$$

$$\ell = \ell_{DC} \quad H/m$$

(II)
$$\delta < r_w < 3\delta$$

$$r = \frac{1}{4} \left(\frac{r_w}{\delta} + 3 \right) r_{DC} \quad \Omega/m$$

$$\ell = \left[1.15 - .15 \left(\frac{r_w}{\delta} \right) \right] \ell_{DC} \quad H/m$$

(III)
$$r_{w} \ge 3\delta$$

$$r = \frac{r_{w}}{2\delta} r_{DC} \quad \Omega/m$$

$$\ell = \frac{2\delta}{r_{w}} \ell_{DC} \quad H/m$$

The per-unit-length self impedance of each strand of radius $\boldsymbol{r}_{_{\boldsymbol{W}}}$ is

$$z_{ST} = r + j\omega l$$
 Ω/m

3.9 Function Subprogram ZDB

Cards FZDB0001-FZDB0023 contain a function subprogram for computing the per-unit-length diffusion impedances of braided shields. For a braided shield having B belts, WPB wires per belt and weave angle $\Theta_{\mathbf{w}}$, the result is [1]

ZDB =
$$r_{DC} \frac{\gamma 2r_b}{\sinh(2\gamma r_b)}$$
 Ω/m

where the braid wires have radius rh,

$$\gamma = (1 + j1)/\delta$$

$$\delta = \frac{1}{\sqrt{\pi f \mu_{xy} \sigma}}$$

and r_{DC} is the per-unit-length D-C resistance of the braid [1]

$$r_{DC} = \frac{1}{\pi \sigma r_b^2 B WPB \cos(O_w)} \Omega/m$$

(All braid wires are treated as being connected in parallel.)

3.10 Function Subprogram ZSB

Cards FZSB0001-FZSB0029 contain a function subprogram for computing the per-unit-length self impedance of a braided shield. The per-unit-length impedance of each isolated braid wire, $\mathbf{z}_{\mathbf{b}}$, is computed as described in section 3.7 and the result is [1]

$$ZSB = \frac{z_b}{B \text{ WPB } Cos(\Theta_w)} \Omega/m$$

3.11 Function Subprogram ZDS

Cards FZDS0001-FZDS0020 contain a function subprogram for computing the per-unit-length diffusion impedances of solid shields. The shield is treated as a thin-walled (relative to the shield radius) cylinder and the equations are [17]

ZDS =
$$r_{DC} \frac{\gamma t_s}{\sinh (\gamma t_s)} \Omega/m$$

where the shield is of conductivity $\boldsymbol{\sigma}_{\text{t}}$ interior radius $\boldsymbol{r}_{\text{s}}^{\text{t}}$, thickness $\boldsymbol{t}_{\text{s}}^{\text{t}}$ and

$$r_{DC} = \frac{1}{\pi \sigma t_{s} (2r_{s} + t_{s})} \Omega/m$$

$$\delta = \frac{1}{\sqrt{\pi f \mu_{v} \sigma}}$$

$$\gamma = (1+j1)/\delta$$

3.12 Function Subprogram ZSS

Cards FZSS0001-FZSS0024 contain a function subprogram for computing the per-unit-length self impedances of solid shields. The shield is, as in ZDS, treated as a thin-walled cylinder and the equations are described in [27]:

$$ZSS = r + j\omega \ell$$
 Ω/m

where the shield has conductivity σ , interior radius r_s and thickness t_s :

$$r = \frac{1}{2\pi r_s \sigma \delta} \begin{bmatrix} \frac{2t_s}{\delta} + \sin(\frac{2t_s}{\delta}) \\ \frac{2t_s}{\cosh(\frac{-t_s}{\delta}) - \cos(\frac{-t_s}{\delta})} \end{bmatrix} \Omega/m$$

$$\omega \ell = \frac{1}{2\pi r_s \sigma \delta} \begin{bmatrix} \frac{2t_s}{\delta} - \sin(\frac{-t_s}{\delta}) \\ \frac{2t_s}{\delta} - \sin(\frac{-t_s}{\delta}) \end{bmatrix} \Omega/m$$

$$\cos \ell = \frac{1}{2\pi r_s \sigma \delta} \begin{bmatrix} \frac{2t_s}{\delta} - \sin(\frac{-t_s}{\delta}) \\ \frac{2t_s}{\delta} - \cos(\frac{-t_s}{\delta}) \end{bmatrix} \Omega/m$$

and δ is the skin depth.

3.13 Subroutine MULTC

Cards SMUL0001-SMUL0017 contain a subroutine for multiplying two complex matrices B and C as

$$A = B C$$

A is of dimension NL x NR,

B is of dimension NL x NM, and

C is of dimension NM x NR.

3.14 Subroutine SCAP

Cards SCAP0001-SCAP0024 contain a subroutine for computing a portion of the per-unit-length elastance matrix, S, described in section 2.1. The routine computes equation (2-42) for only the system of U unshielded wires and S shields, that is, S without submatrices $_{\rm T}^{\rm S}$ and $_{\rm ND}^{\rm S}$. Those submatrices are added to this S in subroutine ADMADD. The matrix to be computed is

$$\begin{bmatrix} \underline{V}_{w} \\ \underline{V}_{s,p} \\ \underline{V}_{w} \end{bmatrix} = \begin{bmatrix} \underline{S}_{ww} & \underline{S}_{ws,wp} & \underline{S}_{ww} \\ \underline{S}_{ws,wp} & \underline{S}_{ss,pp} & \underline{S}_{sw}, pw \\ \underline{S}_{ww} & \underline{S}_{sw}, pw & \underline{S}_{ww} \end{bmatrix} \begin{bmatrix} \underline{q}_{w} \\ \underline{q}_{s,p} \\ \underline{q}_{w} \end{bmatrix}$$

Here w denotes unshielded wires, s denotes shields, p denotes pigtail wires

and $\hat{\mathbf{w}}$ denotes shielded wires. First the per-unit-length elastance matrix is computed from the per-unit-length inductance matrix L as

$$S = \frac{1}{\mu_{v} \epsilon_{v}} L$$

Then a check is made using array KEY to determine if, in fact, a shield is actually present over this section rather than a pigtail wire. If so, those entries in \hat{S}_{ww} need to be changed to the corresponding ones in $\hat{S}_{ss,pp}$ as indicated in equation (2-42). Entries in \hat{S}_{ww} and $\hat{S}_{sw,pw}$ are already computed correctly in L by subroutine INDUCT.

3.15 Subroutine INDUCT

Cards SIND0001-SIND0169 contain a subroutine for computing the per-unitlength inductance matrix L given in equation (2-14) - (2-17):

$$L = \begin{bmatrix} L & L & L \\ -ww & -ws, wp & -w\hat{w} \\ L & L & L \\ -ws, wp & -ss, pp & -s\hat{w}, p\hat{w} \end{bmatrix}$$

$$L = \begin{bmatrix} L & L & L \\ L & L & L \\ -w\hat{w} & -s\hat{w}, p\hat{w} & -w\hat{w} \end{bmatrix}$$

subscripts w, p, s, $\hat{\mathbf{w}}$ have the same meaning here as in the previous section. If over this section, no shields are involved, i.e., each shield is in fact a pigtail wire, then L is computed in a straightforward fashion as that of a system of U unshielded wires, S shielded wires and S pigtail wires. If, over this section, a shield is present (determined by array KEY), then appropriate entries in $\mathbf{L}_{\hat{\mathbf{w}}\hat{\mathbf{w}}}$ are equal to the corresponding entries in $\mathbf{L}_{\hat{\mathbf{w}}\mathbf{s}}$, wp since the mutual inductance between an unshielded wire and a shielded wire is the same as the mutual inductance between the unshielded wire and that shield [1]. Similarly, certain entries in $\mathbf{L}_{\hat{\mathbf{s}}\hat{\mathbf{w}}}$, $\hat{\mathbf{p}}\hat{\mathbf{w}}$ are equal to the corresponding entries in

 $_{ss,pp}^{L}$ since the mutual inductance between a shield and its shielded wire is the same as the self inductance of that shield [1].

3.16 Subroutine PHI

Cards SPHI0001-SPHI0054 contain a subroutine for computing the chain parameter matrix of a section of line as described in section 2.3. To save array space several dummy arrays are used temporarily and written over.

3.17 Subroutine ADMADD

Cards SADM0001-SADM0030 contain a subroutine for adding $_{\sim}^{S}T$ and $_{\sim}^{S}IND$ to the S matrix generated by subroutine SCAP to yield the per-unit-length elastance matrix S in equation (2-42).

3.18 Subroutine IMPADD

Cards SIMP0001-SIMP0039 contain a subroutine to add the self impedances, diffusion impedances and transfer inductances (Z_s , Z_d , L_T) to the per-unit-length impedance matrix to yield Z in equation (2-11). The self impedances of the shielded wires, $Z_{\hat{w}}$, are also added

IV. User's Manual

In this section we will provide a user's manual showing the format and description of the required input data. The program requires that the input data groups be organized as shown in Table 1 where the number of unshielded wires is U and the number of shielded cables is S. These card groups must follow the main program, function subprograms and subroutines in the order shown in Table 1. The data entries on the cards are either in Integer (I) format, e.g., 35, or in Exponential (E) format, e.g., 12.6E-3. All data entries must be right-justified in the assigned card column block. These data entries are printed out by the program. It is highly recommended that the user check this printout of input data to insure that the input data are as intended.

In the main program, the user must appropriately dimension all arrays for each problem. Comment cards are provided at the beginning of the main program to assist the user in providing proper dimensions.

Program SHIELD considers a transmission line consisting of U unshielded wires and S shielded cables and an associated reference conductor. The reference conductor type is determined by:

TYPE = 1: The reference conductor is a ground plane.

TYPE = 2: The reference conductor is an overall, circular, cylindrical shield.

Cross-sectional views of these two structures are shown in Fig. 4-1 and Fig. 4-2.

4.1 Transmission Line Characterization Cards, Group I

The purpose of this group is to define the type of reference conductor, the total line length, the number of unshielded wires and the number of

TABLE 1
Card Group Organization Data

(Note: the card groups must be arranged in the following order.)

<u> rable</u>
2
3
3
! !
3
4 5 6
4 5 6
4
5 6

		TABLE 1 (Cont'd)	Card Group	Table					
4)	Terminal Constraints								
	(a)	Unshielded Wires (Omit if no unshielded wires)						
		Wire 1	IV(a)	7					
		Wire 2	IV(a)	7					
		1 1 1	t t						
		Wire U	IV(a)	7					
	(b)	Shielded Cables (Omit if no shielded cables)							
		Cable 1	IV(b)	8					
		Cable 2	IV(b)	8					
		1	1						
			757(1)	8					
		Cable S	IV(b)	ŏ					
	(c)	Mutual Admittances							
		(See Table 9 for order information)	IV(c)	9					
5)	Frequ	ency and Reference Conductor Impedance							
		frequency 1	v	10					
		frequency 2	v	10					
		1	1						
		,	ŧ						
		1	i						

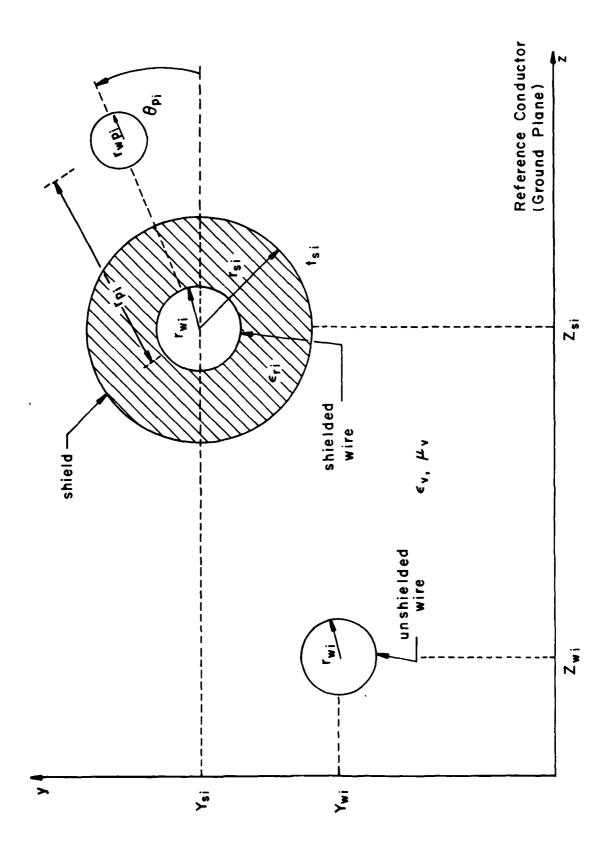


Figure 4-1. The TYPE 1 structure.

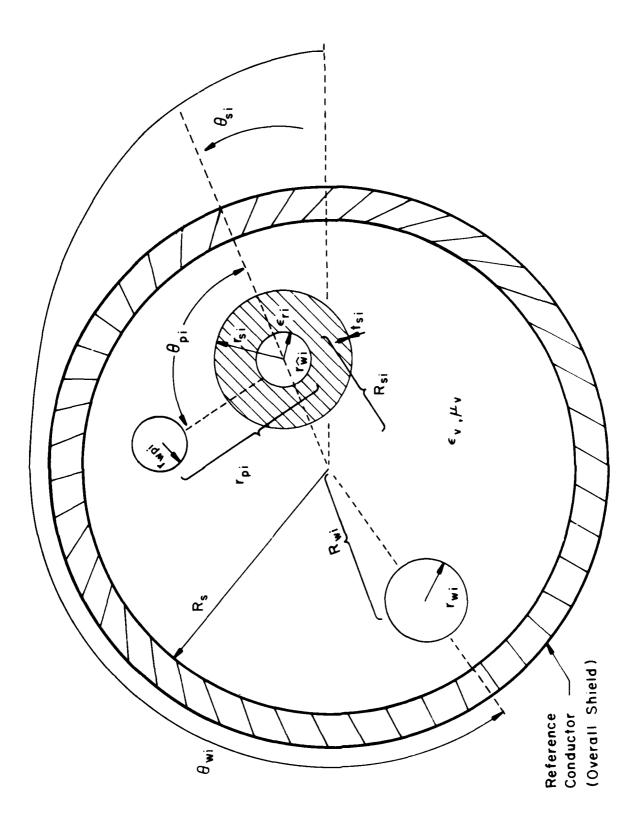


Figure 4-2. The TYPE 2 structure.

shielded wires. In addition, if the reference conductor is an overall, circular, cylindrical shield (TYPE 2) as shown in Fig. 4-2, then the interior radius of this shield, $R_{\rm S}$ is defined.

The format of these cards and their order is shown in Table 2.

4.2 Unshielded Wire Characteristics Cards, Group II

The purpose of this card group is to define the relative positions and the characteristics of the U unshielded wires. The format and order of these cards is shown in Table 3.

4.3 Shielded Cable Characteristics Cards, Group III(a)

The purpose of these cards is to define the relative positions and the characteristics of the shielded cable shields and the characteristics of their shielded wires. The format and ordering of these cards is given in Table 4.

4.4 Pigtail Wire Characteristics Cards, Groups III(b) and III(c)

The purpose of these groups is to define the relative locations and the characteristics of the pigtail wires. The cards for the pigtails at the left (x = 0) end are Group III(b), and their format and ordering are given in Table 5. The similar cards for the pigtails at the right $(x = \mathbf{Z})$ end are Group III(c) and are described in Table 6.

The angular positions of the pigtail wires are measured in the counterclockwise direction when looking from x=0 towards x=2.

4.5 The Terminal Characteristics Cards, Group IV

The general structure of the terminal networks is illustrated in Fig. 2-5. At x=0 and $x=\mathbf{Z}$ an admittance in parallel with a current source is connected between each unshielded wire and the reference conductor and between each shielded wire and the reference conductor. Card Group IV(a) (Table 7) defines these for the unshielded wires, and Card Group IV(b) (Table 8) defines these

TABLE 2
Format of the Line Characterization Cards, Group I

	Card Column	Format
Card #1		
TYPE (1,2)	1	I
Cond #2		
Card #2		
\mathcal{L} (total line length in meters)	1-10	E
Card #3		
	1 2	T
U (number of unshielded wires)	1-2	I
Card_#4		
S (number of shielded cables)	1-2	I
3 (number of shreaded cables)		-
Card #5 (Omit if TYPE=1)		
R (interior radius of overall shield	11-20	E
for TYPE 2 structures in meters)		

TABLE 3

Format of the Unshielded Wire Characteristics Cards, Group II

(Omit if no unshielded wires)

			Card Column	Format
Card #1				
(a)) w _i	(wire number)	1-2	I
	TYPE	=1:		
(Ъ) Y _{wi}	(height of wire above ground in meters)	11-20	E
(c) Z _{wi}	(horizontal coordinate of wire in meters)	31-40	E
TYPE=2:				
(ъ) R _{wi}	(radial distance of wire from axis of	11-20	E
		overall shield in meters)		
(c) ⊙ _{wi}	(angular position of wires in degrees)	31-40	
Card #2				
(a) r _{wi}	(radius of wire in mils)	11-20	E
(b) (nu	mber of strands)	34-35	I
(c) (ra	dius of strands in mils)	51-60	E
(d) (co	nductivity of strands <u>relative to copper</u>)	71-80	E

TABLE 4

Format of the Shielded Cable Characteristics Cards, Group III(a)

(Omit if no shielded cables)

		Card Column	Format
Card #1			
(a)	s (shielded cable number)	1-2	I
(b)	(shield type: 1(solid), 2(braided))	10	I
	TYPE=1:		
(c)	Y _{si} (height of shield above ground in <u>meters</u>)	21-30	E
(d)	Z _{si} (horizontal coordinate of shield in meters	<u>s</u>) 41-50	E
	TYPE=2:		
(c)	R _{si} (radial distance of shield from axis of	21-30	E
	overall shield in meters)		
(d)	θ_{si} (angular position of shield in <u>degrees</u>)	41-50	E
Card #2			
	r (interior radius of shield in meters)	11-20	E.
(a)	r (interior radius of shield in meters)	11-20	E
(b)	$\epsilon_{ extbf{ri}}$ (relative permittivity of dielectric)	21-30	E
(c)	\hat{v}_{ui} (radius of shielded wire in mils)	31-40	E
(d)	(number of strands in shielded wire)	55-56	I
(e)	(radius of strands in shielded wire in mils)	61-70	E
(f)	(conductivity of shielded wire strands	71-80	E
	relative to copper)		
Card #3			
Sol:	id Shields:		
(a)	t _{si} (shield thickness in <u>mils</u>)	11-20	Е

	TABLE 4 (Continued)	Card Column	Format
Card #3 (Cont'd)		
(b)	(conductivity of shield relative to copper)	21-30	E
Brai	ded Shields:		
(a)	(radius of braid wires in mils)	11-20	Е
(b)	(conductivity of braid wires relative to copper)	21-30	E
(c)	(weave angle of braid in degrees)	31-40	E
(d)	(number of belts in braid)	44-45	I
(e)	(number of wires per belt)	54-55	Ť

TABLE 5

Format of Pigtail Wire Characteristics Cards for

Pigtail Wires at Left (x=0) End, Group III(b)

(Omit if no shielded cables)

		Card Column	Format
Card #1			
(a)	\boldsymbol{z}_{pi} (length of pigtail wire in meters)	11-20	E
(b)	r (radial separation of pigtail wire	21-30	E
	from axis of shielded cable in meters)		
(c)	Θ _{pi} (angular position of pigtail wire in	31-40	E
	degrees when looking from x=0 towards		
	x= 1)		
Card #2			
Card 1/2			
(a)	r_{wpi} (radius of pigtail wire in <u>mils</u>)	11-20	E
(b)	(number of strands in pigtail wire)	24-25	I
(c)	(radius of strands in pigtail wire in mils)	31-40	E
(b)	(conductivity of pigtail wire strands	41-50	E
	relative to copper)		

Note: The pigtail wires may be of zero length in which case the other parameters must be nonzero.

TABLE 6

Format of Pigtail Wire Characteristics Cards for

Pigtail Wires at Right (x= ₹) End, Group III(c)

(Omit if no shielded cables)

Same as for Group III(b)

TABLE 7

Format of Terminal Characteristics Cards, Group IV

Self Terms for Unshielded Wires, Group IV(a)

(Omit if no unshielded wires)

				Card Column	Format
Card #1					
(a)	I _{SOi}	(current source between unshielded wire and	real part	1-10	E
		reference conductor at x=0 in amps)	imaginary part	11-20	E
(b)	Y _{Oii}	(admittance between unshielded wire and	real part	21-30	E
		reference conductor at x=0 in Siemens)	imaginary part	31-40	E
(c)	^I S Į i	(current source between unshielded wire and reference	real part	41-50	E
		conductor at x= f in amps)	imaginary part	51-60	E
<u>(</u> d)	Y 1 ii	(admittance between unshielded wire and	real part	61-70	E
		reference conductor at $x = Z$ in Siemens)	imaginary part	71-80	E

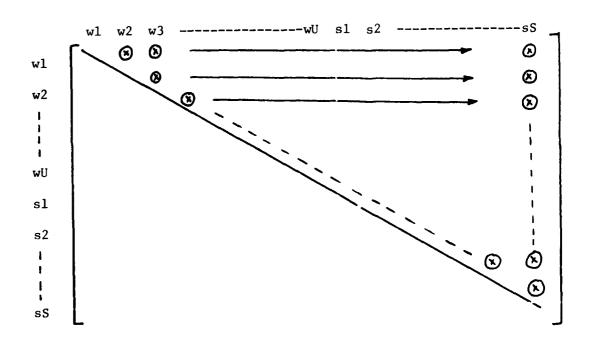
TABLE 8

Format of Terminal Characteristics Cards, Group IV

Self Terms for Shielded Wires, Group IV(b)

(Omit if no shielded cables)

				Card Column	Format
Card #1					
(a)	I _{SOi}	(current source between shielded wire and	real part	1-10	E
		reference conductor at x=0 in <u>amps</u>)	real part imaginary part	11-20	E
(b)	Y _{Oii}		-		E
		reference conductor at x=0 in Siemens)	<pre>freal part imaginary part</pre>	31-40	E
(c)	^I S Į i	(current source be-	<pre>freal part imaginary part</pre>	41-50	E
		and reference conductor at $x=2$ in amps)	imaginary part	51-60	E
(d)	Y , ii	(admittance between shielded wire and	real part imaginary part	61-70	E
		reference conductor at x= Z in <u>Siemens</u>)	imaginary part	71-80	E
Card #2					
(a)	IGNDL	(grounding code for left	end: 1 = short 2 = open)	10	I
(b)	IGNDR	(grounding code for righ	t end: 1 = short 2 = open		I


TABLE 9

Format of Terminal Characteristics Cards, Group IV

Mutual Admittances Group IV(c)

					Card Column	Format
Card #	1					
((a)	YOij	(admittance between	(
		-	conductor i and con-	real part	21-30	E
				imaginary part	31-40	E
((ъ)	Y 1 ij	(admittance between	real part	61-70	E
			conductor i and conductor j at $x=1$)	imaginary part	71-80	E

Note: Cards must be arranged in order (w denotes unshieded wire and s denotes shielded wire) so as to fill the portion of the following matrix above the main diagonal by rows:

TABLE 9 (Continued)

Thus the cards are arranged sequentially in the order of the admittance connected between

A total of

cards are in this group

TABLE 10

Format of the Frequency and Reference Conductor Impedance

(Per-Unit-Length) Cards, Group V

	Card column	Format
Card #1		
F (frequency in Hz)	1-10	E
Card #2		
z_0 (reference conductor impedance \int real part	1-10	E
per unit length in ohms/meter) (imaginary part	11-20	E

Note: Group V may be repeated at the end of the input deck in order for the program to analyze the structure for more than one frequency without having to redefine the previous structure and terminal data for each new frequency. However the previous data Groups I, II, III, IV are assumed to apply to all these frequencies.

for the shielded wires. The current sources at x=0 and $x=\mathbb{Z}$ are directed from the reference conductor to the end of the wire. In addition, the grounding of the shields at x=0 and $x=\mathbb{Z}$ are defined in Card Grop IV(b) (Table 8). Each shield is connected via a pigtail wire (which may be of zero length) to the reference conductor by either a short circuit or an open circuit.

A mutual admittance (which may be zero, i.e., absent) is connected between the ends of all pairs of these wires. The format and ordering of these cards in Group IV(c) is given in Table 9. The user must be careful to adhere to the ordering of these cards as described in Table 9. The ordering scheme is very simple. First describe the admittances connecting unshielded wire #1 and all other wires sequentially in the order unshielded wires first and then the shielded wires. Next describe the admittances connecting unshielded wire #2 and all other wires sequentially in the order unshielded wires first and then the shielded wires. Continue in this fashion until the admittances connecting the last unshielded wire, wire #U, and all other wires (in this case only the shielded wires) have been described. Then describe the admittances connecting the first shielded wire and the remaining shielded wires, sequentially. Then describe the admittances connecting the second shielded wire and the remaining shielded wires, sequentially. Continue until the admittance connecting the next to last shielded wire (S-1) and the last shielded wire (S) is described and the process is complete. The total number of cards in this group is

$$(U+S)$$
 $(U+S-1)$

If the wires are numbered 1, 2, ---, U and the shielded wires are re-

numbered U+1, U+2, ---, U+S, then the ordering is

```
Y<sub>12</sub>
Y<sub>13</sub>
Y<sub>1</sub> (U+S)
Y<sub>23</sub>
Y<sub>24</sub>
Y<sub>2</sub> (U+S)
Y (U-1) U
Y (U-1) (U+S)
Y<sub>U</sub> (U+1)
Y<sub>U</sub> (U+S)
Y(U+1) (U+2)
Y(U+1) (U+S)
^{Y}(U+S-1) (U+S)
```

4.6 The Frequency and Reference Conductor Impedance Cards, Group V

The final card group defines (1) the frequency for the analysis and (2) the per-unit-length impedance of the reference conductor at this frequency. This card group may be repeated at the end of the deck so that the program will analyze the structure at more than one frequency without the need to repeat the previous line and termination characterization groups. The program will process the data in Groups I, II, III and IV and compute the terminal voltages at the frequency on the first frequency card it encounters. It will then recompute the line response at each frequency on the remaining frequency cards (and use the reference conductor impedance on the following card). The program assumes that the data on card groups I, II, III, IV are to be used for all the remaining frequencies. If this is not intended by the user, in particular if the terminal characterizations are frequency dependent, then one may only run the program for one frequency. This feature, however, can be quite useful. If the termination networks are purely resistive, i.e., frequency independent over the frequency range of interest, then one may use as many repetitions of this group as desired and the program will compute the terminal responses at each frequency without the necessity for the user to input the data in Groups I, II, III, IV for each frequency.

4.7 Range of the Values of the Input Data

The only restrictions on the values of the input data are that only certain input parameters can be input as zero values. These are:

(1) NU (the number of unshielded wires)

or

NS (the number of shielded wires)

(Note: if NU=0 or NS=0 certain arrays must be dimensioned of

size 1 not size 0. See cards SHLD0085 and SHLD0097.)

- (2) $Y_{wi} \text{ or } Z_{wi} \text{ and } \Theta_{wi} \text{ in Table 3.}$ (Note: No two wire locations may be the same, i.e., (Y_{wi}, Z_{wi}) and Y_{wj}, Z_{wj}) or (R_{wi}, Θ_{wi}) and (R_{wi}, O_{wi}) .
- (3) $Y_{si} = \frac{or}{si} = \frac{z_{si}}{si}$ and $\theta_{si} = \frac{1}{si} = \frac{1}{si}$. (Note: No two shield locations may be the same. i.e., $(Y_{si}, Z_{si}) = \frac{1}{si} = \frac{1}{si}$ or $(R_{si}, \theta_{si}) = \frac{1}{si}$ and $(R_{sj}, \theta_{sj}) = \frac{1}{si}$.)
- (4) \mathbf{Z}_{pi} (The pigtail lengths for left or right or both pigtails. See Table 5 and Table 6).
- (5) Θ_{pi} (The angular positions of the pigtail wires. See Tables 5 and Table 6.)
- (6) Any of the terminal current source or admittance values. (see Table 7, Table 8 and Table 9.)
- (7) z_0 (The reference conductor impedance at a frequency. See Table 10.)

All of the other data entries should be nonzero (and represent realistic values).

V. Program Checkout

In order to check the proper functioning of the program, several examples were run. Examples consisting of 2 unshielded wires and no shielded wires were run for TYPE 1 and TYPE 2 structures. The outputs of SHIELD were compared to those of program XTALK2 described in [27] and were found to be identical as they should be since XTALK2 performs the same calculations for unshielded wires as does SHIELD. SHIELD was also run for 2 shielded wires each having 8cm pigtail sections on both ends and separated by 1.5cm and 1.5cm above ground. These data were measured experimentally and reported in [1]. In addition a computer program was written for [1] in a "brute force" manner to show predictions of these experimental data. Those predictions are reported in [1]. SHIELD was run for this configuration and the predictions compared favorably with the experimental data in [1] and compared almost exactly with predictions given in [1] by the "brute force" program.

As an integrated test, we performed an experiment to illustrate the prediction accuracies of SHIELD. The experimental configuration is shown in Fig. 5-1. Photographs of the experimental setup are given in Fig. 5-2. The unshielded wires are #22 gauge stranded (radius = 15 mils) with 7 strands of #30 gauge wire (radius = 5 mils). The insulation is pvc (neglected by the program). The shielded cables are identical to those used in [1]. They are braided with inner shield radius of 35 mils = 8.89E-4 m and an inner, shielded wire which is #22 gauge (radius = 15 mils) composed of 7 strands of #30 gauge wire (radius = 5 mils). The inner dielectric is teflon with $\varepsilon_{\rm r}$ = 2.1. The braid wires have radii of 2.5 mils, and the braid consists of 16 belts with 4 wires per belt and a weave angle of 30 degrees. The pigtail wires are #20 gauge (radius = 16 mils) solid bare copper wires. A listing of the input

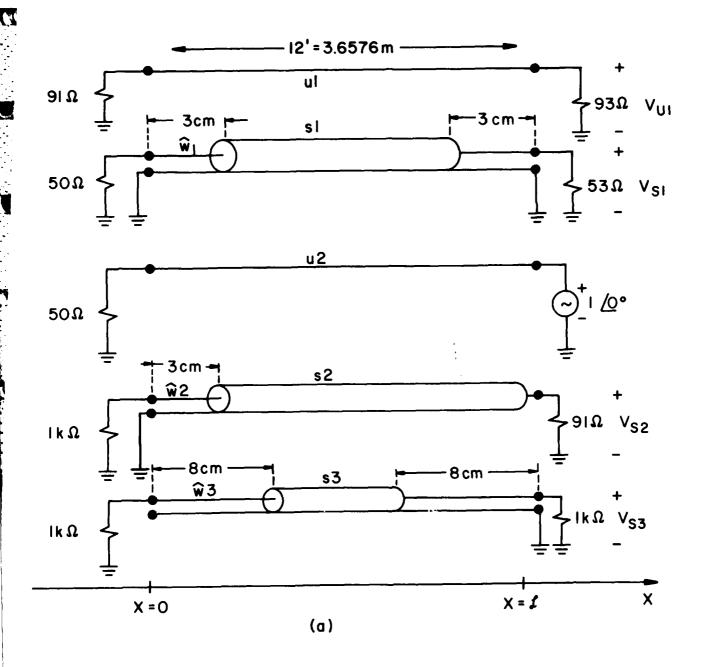


Figure 5-1. The experimental configuration.

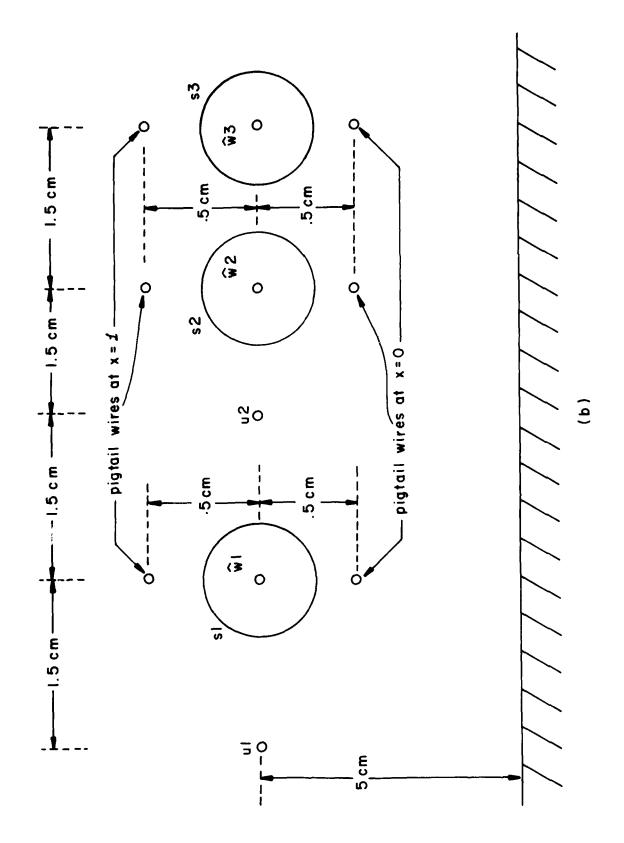


Figure 5-1 (Cont'd)... The experimental configuration.

Figure 5-2. Photographs of the experimental setup.

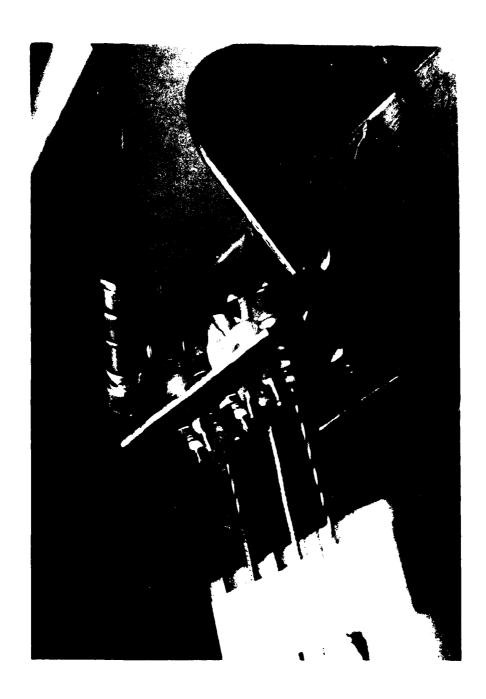


Figure 5-2 (Cont'd)... Photographs of the experimental setup.

data is given in Fig. 5-3. A sample printout of some of the results for $100 \text{kHz} \rightarrow 900 \text{kHz}$ is given in Fig. 5-4.

The unshielded wires, shielded cables and shielded wires are numbered in Fig. 5-1 as ul, u2, s1, s2, s3, $\hat{w}l$, $\hat{w}2$, $\hat{w}3$. In the experiment, an oscillator was attached to the right end of the second unshielded wire (u2), and the voltage of the oscillator was increased until the input voltage to that line was 1 volt. Then the voltages coupled to the other ends of the other wires ul, $\hat{w}l$, $\hat{w}2$, $\hat{w}3$ were measured resulting in voltage transfer ratios. A zero source impedance source is not allowed in the SHIELD input data. Thus to simulate this situation, the source at the right end of the second unshielded wire is 50V with source resistance of 50Ω or, equivalently, a 1A source in parallel with a resistance of 50Ω (2.0E-2 Siemens admittance). (See the listing in Fig. 5-3.) Once SHIELD was run for this configuration, the voltage transfer ratios corresponding to the experimental data are obtained by dividing the voltages at the ends of each line by the voltage at the right end of the second unshielded wire.

The voltage transfer ratios (magnitude and angle) predicted by SHIELD and experimentally measured at the right end (x = \mathcal{L}) of each line are shown in Fig. 5-5 through Fig. 5-8. Fig. 5-5(a) and Fig. 5-5(b) show the magnitude and angle, respectively, of the measured voltage at the right end of the first unshielded wire, V_{11} , versus the predicted voltage transfer ratio of SHIELD:

$$\frac{V_{w1}(\mathbf{f})}{V_{w2}(\mathbf{f})}$$

The predictions are quite good and well within 1dB below 10 MHz. Above 10 MHz the line is becoming electrically long, and, consequently, rapid variations in both the magnitude and the phase of the voltage transfer ratio are observed.

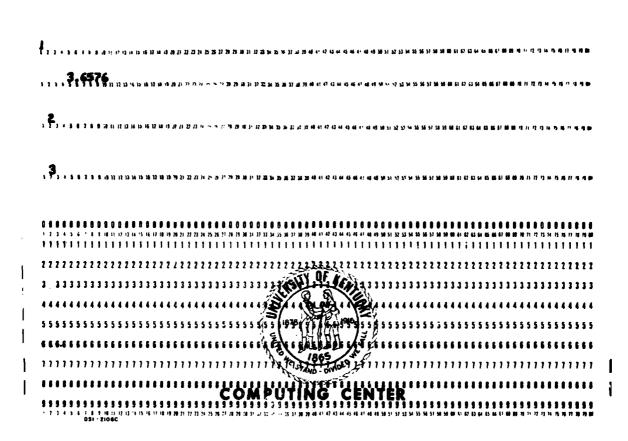


Figure 5-3. Input data for the experiment-line structure characterization data.

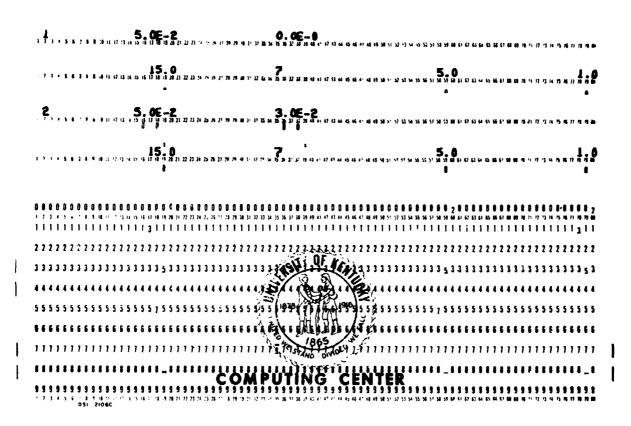


Figure 5-3 (Cont'd)... Input data for the experiment-unshielded wire data.

รรวงระวงรอบ การเลือนสัตล์เยยหลนยมีผู้สัยยนพลนมีที่ผู้สืบผลผลแลนหมอบพทรี่มหมดผอบผลและสัยู้จำการเกล่ารู้ผู้	
เรา () เรา () เมษายน เมื่อเลียยน และ และ เมื่อเลียยน และ เมื่อเลียยน และ เมษายน และ	
127 - 5 - 5 - 5 - 5 - 5 - 7 - 7 - 7 - 7 -	
122155	
123124214444444444444444444444444444444	
171431714 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
171 - 1 171 - 7 การเการาย การการการการการการการการการการการการการก	
123 4 2 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4	1
	1
า 1 2 4 5 4 6 1 5 2 8 1 2 2 7 1 4 5 4 6 7 2 7 2 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	
รรางระระสุมธยุยยายกลักษาจากกลัง การกระบาทหมายหมายหมายหมายหมายกลังการกระบาทหมายหมายกลังการกระบารค	
ระวงระวงรอยแบบแบบ 1844 คือ การเจา 55 05 4 จับพลมพระวัติมีขึ้น คือ อย่น คนา และทางกระทย มหาย แบบ และ พยาย และ ก 	
- 12.2 เรียวรายทางกลุ่ม และเกียราชิก กลุ่ม คือการทางกลุ่ม ของเหตุ เป็นสิ่น และเกล่า เมื่อ และเกล่า และเกล่า และ เกล่า เกล่า เกล	
: กางระบะเลยเกล <mark>ดี เสียนี</mark> สุดภายแก่การสีส์โทยมากมีสีสิตย์และและและและและเพลียนและเกลด์ เกลี้สุดการการการสีสุดิ	í
ร: เราะ เราะ สมเดอพอลทรีเรียนอนนาทร์ หรือของพอง มีชีวส์แผลศัสยาสตรมบอนที่มมหมดเยยนดดเหตุล จากบารทกจาก	ļ
1 2 1 4 5 5 6 6 6 7 2 10 10 10 10 10 10 10 10 10 10 10 10 10	
รวงงาง (จะจากกานแบบที่สีวัติมหายมก็จากการกายนนธาที่สีวัติแบบผลแบ่งเรียบนนหมมหลดยยอดและคลดากการการกา	
ราว - ระ - ระ ะ ยากา จาก เป็น รี คิก พละ ครั้ง คิน รี การ จาก จาก คลาย สมาชาย ผลเหตุ และ เกลา จาก การ จาก ราก 	
รรรงระวงเลงการการปัจจังในบนหลังบนหลากของธรรมีที่สังการและเจิ้งมีเกมมหมหมหมหมหมหมหมหมหมหมหมหมหมหาคลจากการจากจาก	
'	
18 18 18 18 18 18 18 18 18 18 18 18 18 1	
	Į
	•
COMPUTING CENTER 191919111111111111111111111111111111	ı
951 \$1060	

Figure 5-3 (Cont'd)... Input data for the experimental-shielded cable data.

0.9	\$95-5 -5	9: 91: 975878: 3 9:9
_		
• • • • • •	2.0E-2.000 0	
1114117 1 1 acces so so de d'Angun 6	និទ្ធិតែអ៊ីប្រជាមក្ស ត្រឹក្សា ប្រសព្ធបញ្ចាប់សម្ប 	
**************************************	ក្នុលស្សសម្រេសសង្សស្លាធិសមាព្យល់សមាតុថា ស្រីថា.	наминамиченом сме стателя
1221211918200000000000000	1895-300245409-9-9-9-0-4-9-9-9-9-9-9-9-9-9-9-9-9-9-	2.0 T. 0.50 %-5
	—	មានសេចាស្ត្រស្ត្រស្ត្រ () () () () () () () () () (
	4.95-3.00mmmn 2.10.00mm 4. 2.10.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
*************************	្រុកស្ត្រីស្រួល និងសុខ ស្នាធិក្សាស្រួល (សូស្ស) ស្ន	ан эмимине Коневнение в поличение
12115678889998464646	0.0 	
, 2 1 - 5 8 7 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	จำจัดเลยเลยสายการเกาะเกาะเกาะเกาะเกาะเกาะเกาะเกาะเกาะเกาะ	ачанынынынынын 🚧 оттеп . 👊
уузауктакашен ка кымемене		мэлд (мымкориваний) — 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1
танаваяванна кажию устана		чина куминенным в в развительным в развительным в развительным в в развительным в
្រែនក្សិតិខា «សាធ្លាក្រុមស្គាយ់។ កាស់ ១៧		7.046.83.30.04.6.6.04.6.81.81.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	
: 1	0.0	
	0.0	0.0
1 * * * * * * * * * * * * * * * * * * *	9.0 0.0	* * * * * * * * * * * * * * * * * * * *
⁶ — Тахия Свяннуу _{то} упочи <u>р</u> а	១១១៩២សីមីទី២៦៩១៩១. វីគីពី១០០គេចឆ្នូលកម្ -	ระทราสราสหมายผลเลย เก็ร วา กราร รับ
12 1 к 5 4 2 4 д вы страко эти мургод	и по в по в в в в в в в в в в в в в в в в	รับพทหานทสมกับพทสา ผู้ส ับกาจกระห ื่≱? เ

(734597873) 0343474191022 	បានស្នះ ការស៊ីរ សាស្ត្រស្នះ ស្ត្រីស្ត្រី ស្ត្រី ស្ត្រី ស្ត្រី ស្ត្រី ស្ត្រី ស្ត្រី ស្ត្រី ស្ត្រី ស្ត្រី ស្ត្រី បានស្ត្រី បានស្ត្រី ស្ត្រី	នានាសាសស្សាសស្ត្រសាសស្ត្រសាសស្ត្រីស្ត្រី ។ ។ ។ ។ ។ ខែម៉ា ក្រុក្សសាសស្ត្រី ខេត្ត បានស្ត្រី ខេត្ត បានស្ត្រី ខេត្ត ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។
111111111111111111111111111111111111111	71111111111111111111111111111111111111	111111111111111111111111111111
1 1111111111111111111111111111111111111	mm magailte	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
	555555555555555	44444444444444444444444
*****************		\$5555555555555555555555555555
######################################	1,	######################################
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	£6646444444444444
111111111111111111111111111111111111111	COMPUTING CENTE	R
	ប្រជាធិក្រុម មាន ខេត្ត បាន ក្នុង ខេត្ត ប្រជាធិក្សា ខេត្ត ខេត្ត ខេត្ត ខេត្ត	न्त्र न च व च च च च च च च च च च च च च च च च १९४४ । प्रत्य १९९१ - ४६ मार नाम १९४५ । च च च च च च च च च च च च च च इ.स.च्या १९४४ - १९४४ । च च च च च च च च च च च च च च च च च च

Figure 5-3 (Cont'd)... Input data for the experiment-terminal characterization data.

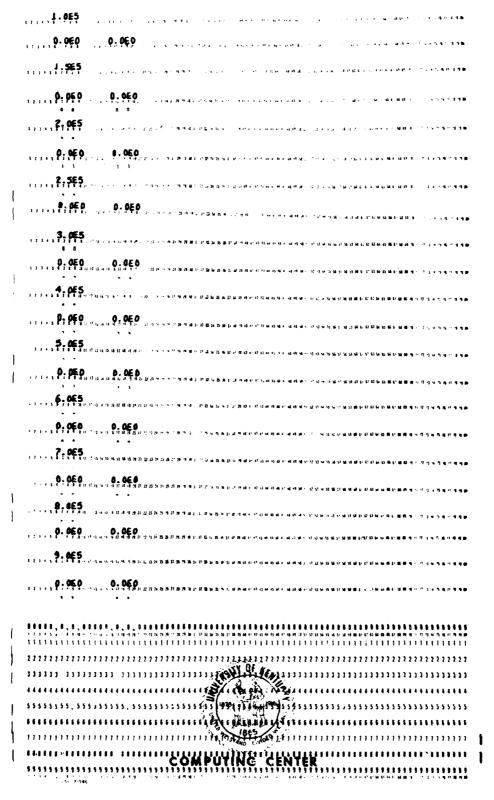


Figure 5-3 (Cont'd)... Input data for the experiment-frequency and common impedance data.

2 UNSHIELDED HIRES 3 SMIELDED WIRES LINE LENGTH (METERS)=

REFERENCE COMDUCTOR IS A GROUND PLANE

DATA FOR THE UNSHIELDED WINES

	SIGUST	1.0000 00
(RETERS)		
OF SMIELD	ANST	5.0000 00 5.0000 00
From Center Egrees)	NWST	
R RADIAL DISTANCE INGULAR POSITION (D RELATIVE TO COPPER)	3	1.5000 01
YW# WIRE MEIGHT ABOVE GROUND (METERS) OR RADIAL DISTANCE FROM CENTER OF SMIELD (METERS) ZW# MOKILCONTAL COORDINATE (METERS) OR ANGULAR POSITION (DEGREES) RM# WINE RADIUS (MILS) NWST= NUMBER OF WIRE STRANDS RMST= RADIUS OF WIRE STRANDS (MILS) SIGWST= CONDUCTIVITY OF WIRE STRANDS (RELATIVE TO COPPER)	*2	0-0000-01 3-0000-02
RE HEIGHT ABOVE KILONTAL COORDI HE RADIUS (MLS MUMBER OF WIRE KADIUS OF WIRE E COMDUCTIVITY	*	5-0000-62 5-0000-62
VAR HO ZAR HO RES HI NASTE SIGNSTE SIGNSTE	HIRE	70

DATA FOR THE SHIELDED MIRES

D (METERS) OR RADIAL DISTANCE FROM CENTER OF SHIELD (METERS) Ters) or ancular position (decrees) NDS (RELATIVE TO COPPER) INTERIOR DIELECTRIC

Figure 5-4. Printout of computed results for the experiment.

SIGUST	1-0000 1-0000 1-0000 1-0000		3	***				
RWST	00 0000-5		DELTS	202			SIGPIN	1.0000 1.0000 1.0000 0.000
Nus T			T	3-0000 01 3-0000 01 3-0000 01			RPWSTL	1-6000 01 1-6000 01 1-6000 01
2	1.5000 01 1.5000 01 1.5000 01		8168	1.0000 1.0000 1.0000 0000 0000			¥	444
ERS	2-1990 90 2-1990 90 2-1990 90	vy	a	2 - 5000 00 2 - 5000 00 2 - 5000 00	AILS	RE (METERS) TO COPPER)	RPWL	1. 6000 01 1. 6000 01 1. 6000 01
S S	8-8980-04 8-8980-04 8-8980-04	SHIELD CHARACTERISTICS ELATIVE TO COPPER) ATIVE TO COPPER)	ø	2 2 2	DATA FOR THE PIGTAILS LEFT PIGTAILS	IERS) 1. WIRE FROM SMIELDED WIRE HRETERS 1. WIRE (DEGREES) 1. WIRE 5. WIRE STRANGS (RELATIVE TO COPPER)	THE	2 - 7960 02 2 - 7960 02 2 - 7000 02
×	1.5000-02 4.5000-02 6.0000-02	3 3	5165		A C	IL (METERS) PIGTALL WIRE FROM SHIELDED WIRE (METERS) PIGTALL WIRE (DEGREES) ARE (MILS) PIGTALL WIRE WIRE STRANDS (MILS) LETAIL WIRE STRANDS (RELATIVE TO COPPER)	RPL	5.0000-63 5.0000-03 5.0000-03
2.	5.0000-02 5.0000-02 5.0000-02	TS* SOLID SMIELD TMICRNESS (MILS SIGS* SOLID SMIELD CONDUCTIVITY RB* RADIUS UF BRAID WIRES (MILS) SIGB* BKAID WIRE COMDUCTIVITY (R THB* BKAID WEAVE ANGLE (DEGREES) BELTS** NUMBER OF WIRES PER BELT	TYPE TS	8 RAIDED Braiued Braioeo		OF LEFT PIGTA SEPARATION OF R POSITION OF UF STRANDS IN US UF PIGTALL US UF PIGTALL	1	3.0000-02 3.0000-02 8.0000-02
SMIELD	4 N B	TS* SOLID S SIGS* SOLID RB* KADIUS (SIGB* BKAID THB* BKAID BELTS* MUMBER	SHIELD .	3 6 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		LPL= LENGTH THPL= KADJAL THPL= KADJU, KPHL= KADJU, NPL= NUMBER RPHSTL= RADJ	SMIELO	N M

Figure 5-4 (Cont'd)... Printout of computed results for the experiment.

					114	10-0000-0	111	0-0000 0-0000 0-0000 0-0000			
	SIGPER	1.0000 00 1.0000 00 1.0000 00			YLR	1.0750-02 2.0000-02	YLA	1.0870-02 1.0990-02 1.000-03			
	RPHSTR	1-6000 01 1-6000 01 1-6000 01			141	0.0000-01	16.1	0.0000-01 0.0000-01 0.0000-01			
	Ĭ			X	זרצ	0-0000-01 1-0000 00	11.8	0.0000-01		174	
TO COPPER)	22	1.6000 01 1.6000 01 1.6000 01	PEDANCE DATA	AND REFERENCE CONDUCTOR AT AND REFERENCE CONDUCTOR AT X=0 REFERENCE CONDUCTOR AT X=0 AND REFERENCE CONDUCTOR AT AND REFERENCE CONDUCTOR AT X=EFERENCE CONDUCTOR AT X=L REFERENCE CONDUCTOR AT X=L REFERENCE CONDUCTOR AT X=L	101	0.0000-01	YOI	6.6000-01 6.6000-01 6.6000-01		YLR	
WIRE (DEGREES) S) WIRE RANDS (WILS) IRE STRANDS RELATIVE TO COPPER)	AAHT	9.000 01 9.000 01 9.000 01	ERNINAL SQURCE AND IMPEDANCE DATA		YOR	1.0990-62 2.000-62	*	2.0000-02 1.0000-03 1.0000-03		10 1	
vire S) Hire Rands IRE ST	A A	5.0000-03 5.0000-03 5.0000-03	Ternina	22 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	101	0-0000-01	101	0.0000-01 0.0000-01 0.000-01	EEN WIRES	7 OR	
THPR= AMCULAR POSITION OF PIGTAIL W RPWR= RADIUS OF PIGTAIL WIRE (WILS) NPR= NUMBER OF STRAMOS IN PIGTAIL W RPWSTR= RADIUS OF PIGTAIL WIRE STRA SIGPWR= CONDUCTIVITY OF PIGTAIL WIRE	LPR	3.0000-02 0.0000-01 8.0000-02		PART UF PART OF PART OF PART OF PART OF PART OF	10R	10-0010-0	WIRE 10R	0.0000-01	IMPEDANCES BETWEEN WIRES	ختر	
TAPRE ANG RPHRE RAD! NPRE NUMBE RPHSTRE RA SIGPERE CC	SHIELD	~ N M		10K= REAL 161= 1MAG VOK= KEAL VOI= 1MAG 11R= KEAL 111= 1MAG VLK= BAG	3 3 3 3	40	SMIELUED WINE	~ N M	~	MIRE WIRE	

Figure 5-4 (Cont'd)... Printout of computed results for the experiment.

											VLAIDEGREES	8-400 GL 1-2170 GB	
		413	0.0000-01 0.0000-01 0.0000-01										
YLA	0.0000-01 0.0000-01 0.0000-01 0.0000-01 0.0000-01	YLR	0.0000-01 0.0000-01 0.0000-01								VLM(VOLTS)	5.56 70-02 2.5070 01	
Y.R	9-9900-01 0-9000-01 0-9000-01 0-0000-01 0-0000-01	104	10-0000-0 10-0000-0		i X			0-0000-01 DMS PER METER			S		
104	0.0000 0.0000 0.0000 0.0000 0.0000			•	TERMINATION AT X-	SHORT OPEN SHORT		?	1008 = 2	DNS = 2	VOA!DEGREES)	-1.3090 00	
8	0.0000-01 0.0000-01 0.0000-01 0.0000-01 0.0000-01	ğ	0.0000-01 0.0000-0	LD TERMINATION DATA				10-7000-0	RIGHT PIGTAIL SECTIONS	LEFT PIGTAIL SECTIONS			
D WIRE		SMIELDED WIRE	ଅ ମ ମ	SMIELD TER	TERMINATION AT X=0	SHOKT SHORT OPEN	1.0000 05	OCTOR IMPEDANCE.	THE NUMBER OF RIGHT	THE NUMBER OF LEFT P	VOM (VOL 15.)	4-9930- 62 2-4950 01	
RE SMELDED WIRE		SMIELDED WINE	er er V		SMIELU TER	≈ 0. m	FREQUENCY INZ 1=	REFERENCE CUNDUCTOR IMP	77.	THE	9		
HIRE		3			3		£	RE			wire	44	

Figure 5-4 (Cont'd)... Printout of computed results for the experiment.

SMIELDED WIRE	VOM (VOLTS)	VOA (DEGREES)	VLM(VOLTS)	VLA(DEGREES)
	9.0470-03 2.9290-01 1.0360-01	-1.71% 02 -9.381D 01 -6.486D 01	9.6020-03 2.7990-62 1.0040-01	8.5560 00 1.0370 02 7.8910 61
FREUVENCY INZ)= 1.	1.500v 05			
REFERENCE CONDUCTOR IMPEDANCE.	R IMPEDANCE: 0.6300-01 +J	+J 0.0000-01 DHMS PER METER		
THE NUMBE	THE NUMBER OF RIGHT PIGTAIL SECTIONS	10MS = 2		
THE NUMBER OF LEFT	R OF LEFT PIGTAIL SECTIONS	DIS = 2		
E JRE	VOM (VOL TS)	WOA (DEGREES)	VLM (VOLTS)	VLA10EGREES)
→ N	7.4e1D-02 2.494D 01	-9.606D 01 -1.963D 00	8.3230-02 2.5090 01	8.4450 01 1.8230 00
SMIELDED WIRE	VOM (VOLTS)	VOA (DEGREES)	VLM(VOLTS)	VLAIDE GREES)
~ V &	9.0490-03 4.3920-01 1.6130-01	-1.698D 02 -9.496D 01 -6.101D 01	9.616D-03 4.426D-02 1.4850-01	1.080U 01 1.1030 02 7.4330 01
FREQUENCY(HZ)= 2.000D 05 REFERENCE CUNDUCTOR IMPEDANCE=	2.0000 05 TOR IMPEDANCE: 0.0000-01 +J	+J 0.0060-01 DHMS PER METER		
THE NUMBE	THE MUMBER OF RIGHT PIGTAIL SECTIONS	IONS = 2		

Figure 5-4 (Cont'd)... Printout of computed results for the experiment.

VLA (DECREES)	8-4170 01 2-4260 90	V. AIDECREES)	1.3540 01 1.1590 02 6.9720 01					VLA (DEGREES)	8.3620 01 3.0250 00	M. AT DE CREES)	1-6460 01 1-2060 02 6-5200 01
VLMIVOLTS)	1-1000-01	VLM(VOLTS)	9 • 6250-03 6 • 3040-02 1 • 9430-01					VLM(VOLTS)	1.3940-01 2.5140 01	VLA(VOLTS)	9-6370-63 8-6850-62 2-3730-61
voa (de gree s)	-2.6170 GL	VOA(DEGREES)	-1.6730 62 -9.6260 01 -7.8810 01		0-0330-01 +J 0-0000-01 DHMS PER METER	SECTIONS = 2	SECTIONS = 2	VOA(DEGREES)	-5.6970 01 -3.2700 00	VOA(DEGREES)	-1.6450 02 -0.7430 01 -7.7360 01
VOR (VOL TS)	9.9330-62 2.4930 60	V OM (V CL. T S)	9.042D-03 5.8550-61 2.2490-01	2-5000 05	MCEs	THE NUMBER OF RIGHT PIGTAIL SECTIONS	THE NUMBER OF LEFT PIGTAIL SECTIONS	VOM (VOL TS.)	1-2+00-01 2-4920 01	VOMIVOLTS)	9.0340-63 7.3190-61 2.9510-61
#1RE	et N	SMIELDED MIRE	~ N M	FREQUENCY (NZ)=	REFERENCE CUNDUCTOR IMPEDA	THE NUI	TAE NO.	HIRE	4.8	SMIELDED WIRE	~ N m

Figure 5-4 (Cont'd)... Printout of computed results for the experiment.

FREQUENCY(NZ)= 3.0000 05

SECTIONS	
PICTAIL	
RICHT.	
a	
NUMBER	

THE NUMBER OF LEFT PIGTAIL SECTIONS

VLA(DEGREES)	9.2945 91 3.6195 60	W.A.(DEGREES)	1.9660 61					VLAIDEGREES)	8-1370 01 4-7870 60	VLA(DECREES)
VLA(VOLTS)	1.6590-01 2.5210 01	VLM(VOLTS)	9.6770-03 1.100-01 2.7730-01					VLM(VOLTS)	2.20 40-0 1 2.5330 01	VLA(VOLTS)
VOA (DEGREES)	-9.7720 61 -9.9230 60	VOAIDEGREES)	-1.6150 02 -4.9030 01 -7.6620 01		0.8080-01 +J 0.0000-01 DHMS PER METER	GHT PIGTAIL SECTIONS = 2	L SECTIONS = 2	VOA (DEGREES)	-5-9430 81 -5-2250 80	VOAIDEGREES)
VOM (VOLTS)	1-4670-01	Vanivol TS)	9.0460-63 8.7430-61 3.7160-61	4.0000 95	MCE.	THE NAMBER OF RIGHT PIGTA	THE NUMBER OF LEFT PIGTAIL SECTIONS	VOM (VOLTS)	1.9800-01 2.486D 01	VOM (VOL TS)
#1Re	-1 2	SHIELDED WIRE	ସେଷଣ	FREQUENCY(HZ)=	REFEKENCE CUNDUCTUR IMPED	T T	4x:	=1 KE	- N	SMIELVED WIRE

Figure 5-4 (Cont'd)... Printout of computed results for the experiment.

N M	9-1550-03 1-1710 00 5-4270-01	-1.5470 02 -1.0190 62 -7.6600 01	9.8570-63 1.7150-61 3.4750-61	2.6600 01 1.2970 62 5.2460 61
FREGUENCY (M2)=	\$-0000 65			
REFERENCE CUNDU	REFERENCE CUNDUCTUR IMPEDANCE= 0.030	0.6J00-61 +J 0.6060-81 CHMS PER METER		
THE R.	THE NUMBER OF RIGHT PIGTAIL SECTIONS	SECTIONS = 2		
THE NU	THE NUMBER OF LEFT PIGTAIL SECTIONS	EC710MS = 2		
W I RE	Van (Vol. 75)	VOA (DEGREES)	VLM(VOLTS)	VLA(DEGREES)
ed N	2.4710-01 2.4600 91	-1.0130 G2 -6.5240 00	2.7550 -01 2.5490 0 1	7.9660 61
SMIELDED MIRE	VOM (VOLTS)	VOA(DEGREES)	VLM(VOLTS)	VLA(DEGREES)
- O 6	9.453U-03 1.4640 60 7.320U-01	-1.4730 02 -1.0480 02 -7.7890 01	1.0260-02 2.4850-01 4.0530-01	3.424D 01 1.328D 62 4.533D 61
FREUDENCY(M1)= REFERENCE CUNDU	6.300D 05 KTUK IMPEDANLE	0-0300-01 +J 8-0060-31 DHMS PER METER		
THE NO	THE MUMBER OF RIGHT PIGTAIL SECTIONS	SECTIONS = 2		

Figure 5-4 (Cont'd)... Printout of computed results for the experiment.

THE NUMBER OF LEFT PIGTAIL SECTIONS

11.2E	VOM (VOLTS)	VOA (DEGREES)	VLH(VOLTS)	VLAID EGREES)
~~	2.9590-01 2.4740 @1	-1.6320 62 -1.8170 66	3.290-01 2.5600 01	7.7890 01 7.0230 00
SMIELDED WIRE	VOR(VOLTS)	VOAIDEGREES)	VLM (VOLTS)	V. A I DEGREES)
N B	1.0030-02 1.7560 00 9.3370-01	-1.3970 02 -1.6770 02 -7.9910 61	1.0965-02 3.4175-01 4.5190-01	4.1690 81 1.3450 92 3.8750 91
FREUDENCY (HZ)=	7.0060 05			
KEFERENCE CUNDU	REFERENCE CUMDUCTUR IMPEDANCE= 0.000	8-00000-61 +J 8-0000-81 CHMS PER METER		
THE NU	THE NUMBER OF RIGHT PIGTAIL SECTIONS	.ECTIONS = 2		
THE NU	THE NUMBER OF LEFT PIGTAIL SECTIONS	CTIOMS = 2		
HIRE	VOM (VOLTS)	VOA (DEGREES)	VLM(VOLTS)	VLA(DEGREES)
4 N	3.4450-01	-1.052D 02 -9.105D 00	3.8390-01 2.5900 01	7.608D 01 8.080D 00
SMIELDED MINE	VOMIVULTS	VOA(DEGREES)	VLMIVOLTS)	V. ALDEGREES)
~ N F	1.0920-02 2.0490 00 1.1430 08	-1.3290 02 -1.1060 02 -0.2770 01	1.2000-02 4.5120-01 4.8950-01	4-8360 01 1-3500 02 3-2660 01
FREUUENCY (HZ)=	8-000h 05			

REFERENCE CONDUCTUR IMPEDANCE - 0.0000-01 +J 0.0000-01 DHIS PER HETER

Figure 5-4 (Cont'd)... Printout of computed results for the experiment.

N
Ħ
2
蓋
₩
13
SEC
S
4
-
2
3
~
_
4
-
4
ð
æ
¥
ž
3
_

V. AIDEGREES)	7.4230 01	W.A.(DEGREES)	5.3650 01 1.3460 02 2.7560 61				VLA (DEGREES)	7.2370 01 1.4650 01	VLA(DECREES)	5-8010 01 1-3400 62 2-2770 01
VLM(VOLTS)	4-3740-01 2-6150 01	VLM(VOLTS)	1-3340-02 5-7760-01 5-1970-01				VLM(VOLTS)	4.9040-01 2.6430 01	VLM(VOLTS)	1.4990-62 7.1920-61 5.4420-64
VOA (DE GREES)	18 04 00-1-	VOA (DEGREES)	-1.2710 02 -1.1360 02 -6.4780 01	0-0000-01 +J 0-0000-01 OHMS PER METER	PIGTAIL SECTIONS = 2	PIGTAIL SECTIONS = 2	VOA (DEGREES)	-1-8030 EE -1-1660 01	VOA (DEGREES)	-1.2270 62 -1.1440 02 -1.7340 81
VOM (#0LTS)	3-9280-01 2-4570 61	VOR (VOLTS)	1.2110-02 2.3410 00 1.3580 00	AVC E=	THE NUMBER OF RIGHT PIGTA)	THE NUMBER OF LEFT PIGTAIL	VBM (VOL TS)	4-+06D-B1 2-++70 01	VOM (VOLTS)	1.3570-62 2.6320 98 1.5750 00
1	~ 2	SMIELDED WIKE	≈જાલ	ARQUEMLY(HL)= 9.0000 05 EFERENCE CUNDUCTOR IMPED	THE NU	7. 34.	IAE	at ou	STELDED WIRE	

Figure 5-4 (Cont'd)... Printout of computed results for the experiment.

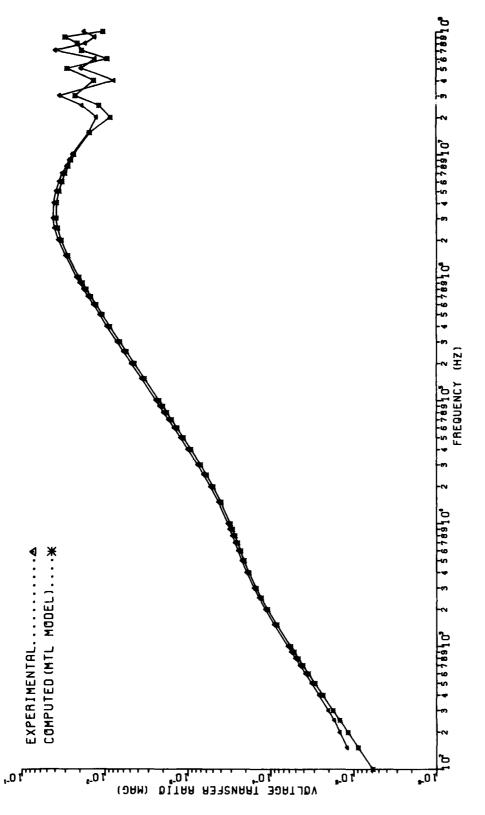


Figure 5-5(a). Magnitude of voltage transfer ratio to right end of ul.

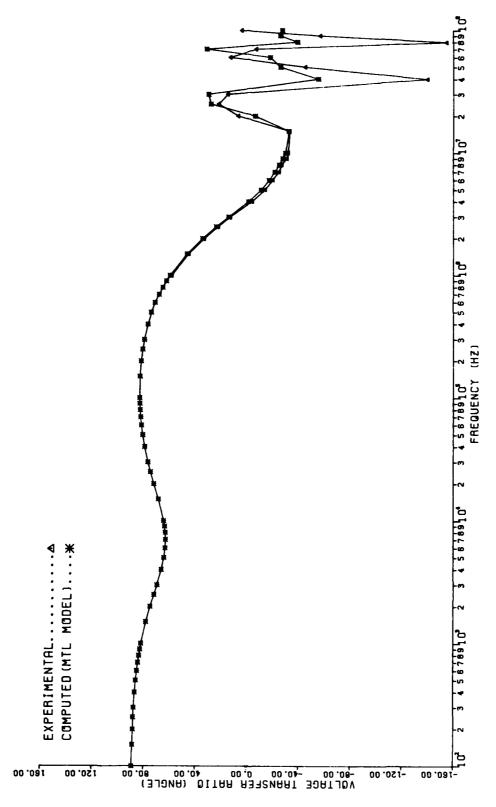


Figure 5-5(b). Angle of voltage transfer ratio to right end of ul.

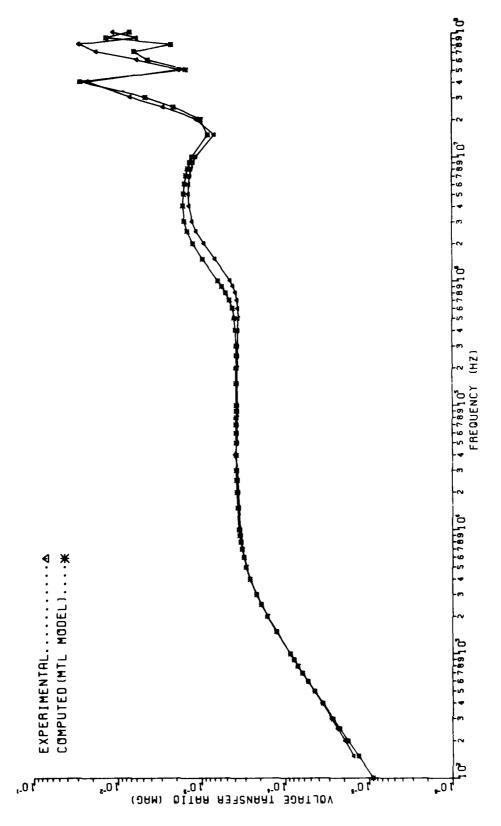


Figure 5-6(a). Magnitude of voltage transfer ratio to right end of sl, $\hat{w}l$.

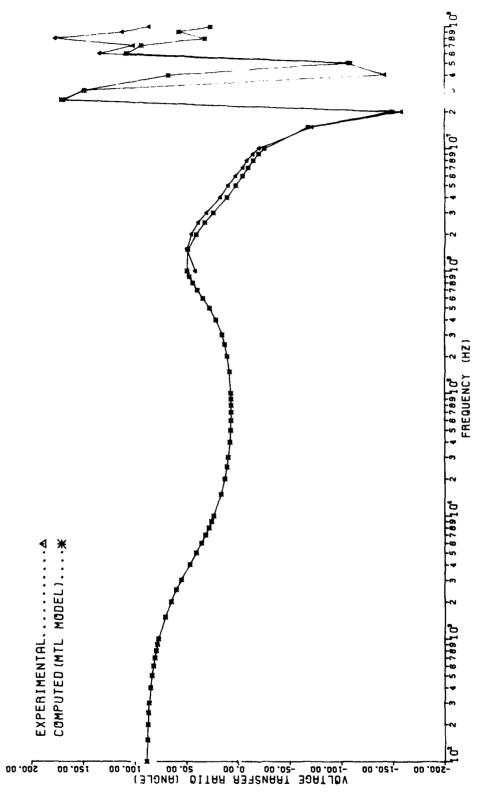


Figure 5-6(b). Angle of voltage transfer ratio to right end of sl, $\hat{\mathbf{w}}$ l.

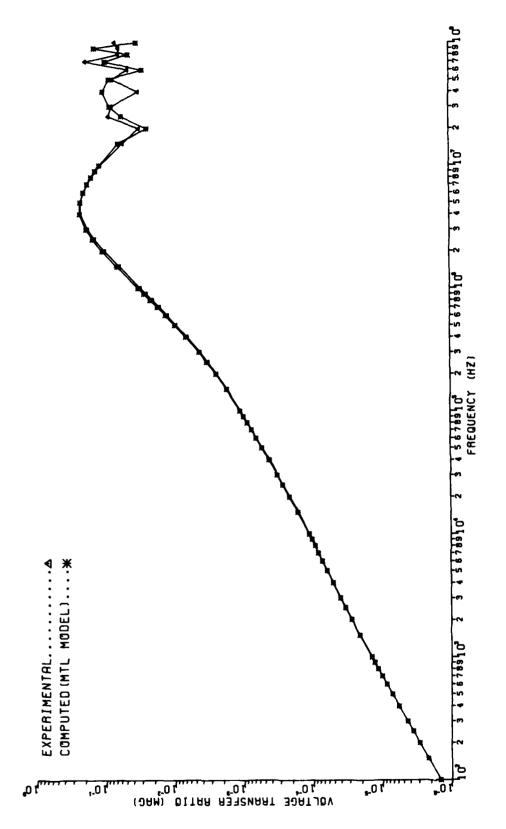


Figure 5-7(a). Magnitude of voltage transfer ratio to right end of s2, $\hat{w}2$.

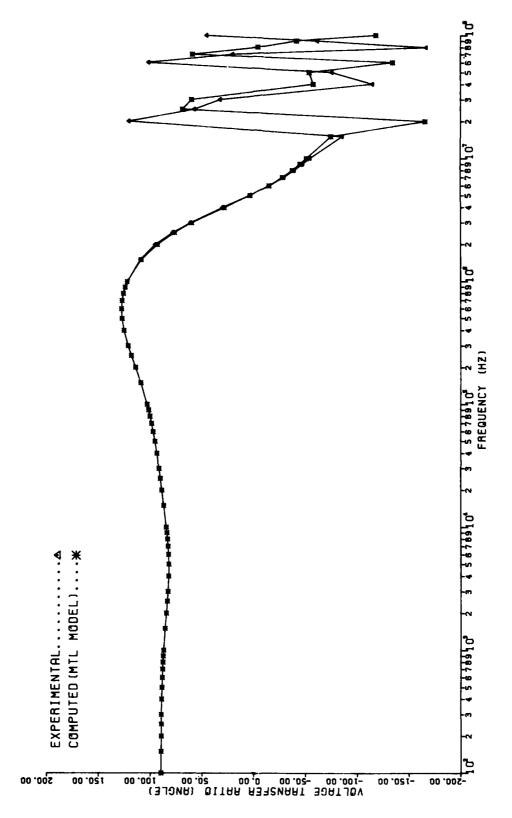


Figure 5-7(b). Angle of voltage transfer ratio to right end of s2, $\hat{w}2$.

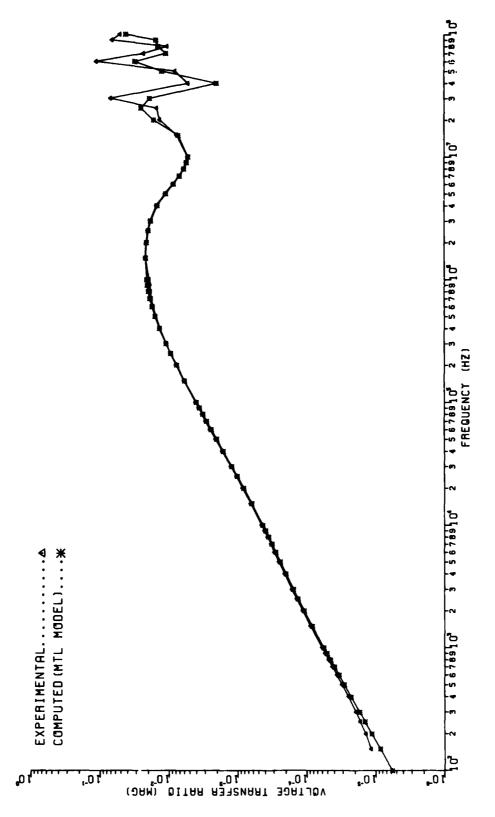


Figure 5-8(a). Magnitude of voltage transfer ratio to right end of s3, \hat{w} 3.

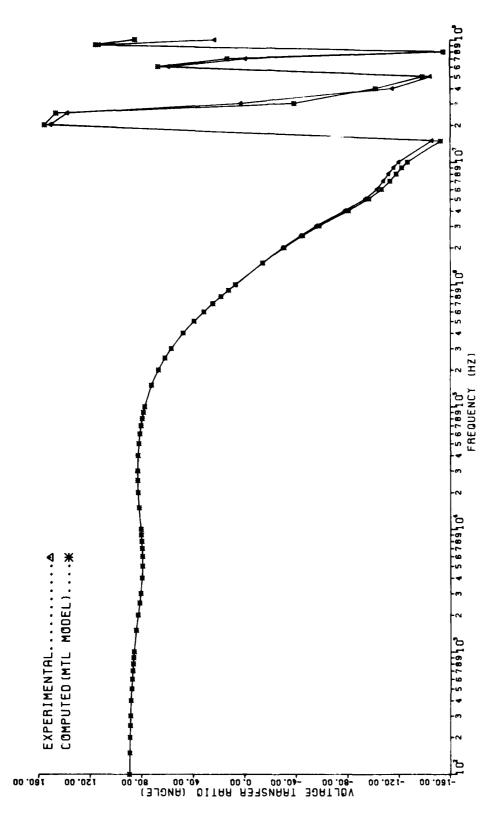


Figure 5-8(b). Angle of voltage transfer ratio to right end of s3, \hat{w} 3.

Nevertheless, the program predicts these results rather well.

A similar comparison of the voltage transfer ratio to the right end of the first shielded wire, ${\rm V}_{\rm s1}$, and the predictions of SHIELD,

$$\frac{V_{\hat{\mathbf{w}}1}(\mathbf{z})}{V_{\mathbf{w}2}(\mathbf{z})}$$

are shown in Fig. 5-6. Note that above 1 MHz, the coupling which had become "flat" for lower frequencies tends to rise. This is a result of the coupling via the two 3cm pigtail sections dominating the coupling to the (much longer) shielded section as is explained in [1,2]. SHIELD predicts these results rather well.

The comparison of the voltage transfer ratio to the right end of the second shielded wire, $\rm V_{\rm S2}$, and the predictions of SHIELD,

$$\frac{V_{\hat{w}2}(\boldsymbol{\chi})}{V_{w2}(\boldsymbol{\chi})}$$

are shown in Fig. 5-7. Here the left pigtail (3cm) is grounded but the right pigtail (zero length) is open. The predictions of SHIELD are again quite accurate. The comparison of the voltage transfer ratio to the right end of the third shielded wire, $V_{\rm S3}$, and the predictions of SHIELD,

$$\frac{\mathbf{v}_{\hat{\mathbf{w}}3}(\mathbf{z})}{\mathbf{v}_{\mathbf{w}2}(\mathbf{z})}$$

are shown in Fig. 5-8 and are quite good. For this shield, the left pigtail (8cm) is ungrounded (open) and the right pigtail (8cm) is grounded (short).

Note that even though the left pigtail wire is ungrounded, the program assumes the pigtail wire is present.

Note that for the unshielded wire in Fig. 5-5(a), there is a slight

change in the response from a 20dB/decade (linear with frequency) response between 3 kHz and 10 kHz. Prior to this experiment the author has observed the coupling to similar unshielded wires to decrease uniformly at 20 dB/decade at the lower frequencies where the line is electrically very short. This observed behavior is, as yet, unexplainable in simple terms but SHIELD predicts this result very accurately.

This experiment tends to confirm that the SHIELD program (1) is working as intended and has no major programming errors, and (2) provides realistic predictions of crosstalk for shielded cables. The user is cautioned, however, that if the cross-sectional dimensions (wire spacing and height above ground) are not (1) known and/or (2) controlled such as occur in many types of wiring harnesses (which we refer to as random bundles) then the SHIELD program cannot be expected to provide adequate predictions [28]. However, in controlled characteristic cables such as the flatpack type, accurate predictions are achievable. Controlled characteristic flatpack type cables are presently being marketed which contain shielded cables, twisted pairs, etc. For these types of cables, the SHIELD program can be expected to provide accurate predictions.

VI. Summary

This report contains the description and verification of a digital computer program, SHIELD, to be used in the prediction of crosstalk in transmission lines consisting of U unshielded wires and/or S shielded cables. The line may be above a ground plane (TYPE 1) or within an overall, circular, cylindrical shield (TYPE 2). Each shielded cable consists of a circular, cylindrical shield which may be solid or braided and a wire (the shielded wire) located concentrically on the axis of the shield. All wires may be stranded and all conductors are treated as imperfect conductors; that is. their per-unit-length impedances are nonzero. Through-braid coupling for braided shields as well as diffusion for both types are included in the model. The shielded cables may have exposed sections at either end (pigtail sections) in which the shielded wire is not covered by the shield. Over these pigtail sections, a pigtail wire, parallel to the shielded wire, connects the shield to the reference conductor at that end via either a short circuit or an open circuit. These pigtail sections are included in the representation to simulate the common practice of terminating a shielded cable in a connector via these pigtail wires.

The multiconductor transmission line equations are solved for sinusoidal, steady-state excitation of the line. The terminal networks at the two ends of the line are modeled by a generalized Norton equivalent representation in which a current source and an admittance are connected between the reference conductor and the ends of the U unshielded wires and S shielded wires. An admittance is connected between the ends of each pair of these U+S wires. Any of these admittances may be absent, i.e., set equal to zero.

The program is rather expensive to run. For example when implemented on

an IBM 370/165 digital computer using the WATFIV compiler, the program required 3.82 sec. compilation time and 84.35 sec. execution time to compute the response at 11 frequencies for the example in Section V consisting of 2 unshielded wires and 3 braided-shield cables. This represents an approximate per-frequency computation time of 8 sec. The required storage for this problem was 115192 bytes for the object deck and 32400 bytes for the arrays.

One reason for this rather lengthy run time is a result of the decision to include the capability for modeling pigtails. The program divides the overall line into cross-sectionally uniform sections. Then the chain parameter matrices for each of these uniform sections of line are determined and the overall chain parameter matrix of the line is determined as the product (in the appropriate order) of these chain parameter matrices of the individual, uniform sections. For a line consisting of U unshielded wires and S shielded cables, each chain parameter matrix is $2(U+2S) \times 2(U+2S)$. For the example in section V consisting of 2 unshielded wires and 3 shielded cables, each chain parameter matrix was 16 x 16. Thus for a line consisting of N sections we must, at the least, multiply N such matrices together. Once the overall chain parameter matrix of the entire line is determined in this fashion we must incorporate the terminal conditions which requires several matrix multiplications and the solution of 2(U+S) simultaneous, complex equations. This process must be repeated for each frequency.

Not only must these chain parameter matrices for each section be multiplied together but they must be computed. In determining these chain parameter
matrices of each section we must compute the eigenvalues and eigenvectors of
a (U+2S) complex matrix. This is a result of the need to consider all conductors as being imperfect. If we had assumed all conductors as being

perfect conductors, the eigenvectors and eigenvalues would not need to be computed. But if the finite conductivity of the shields are not considered, i.e., the shields are considered as perfect conductors, no coupling would occur to the interior shielded wires for solid shields - clearly an unrealistic result. For braided shields, only through-braid coupling would occur but this is almost insignificant for many typical cables. In other situations one can assume perfect conductors. For shielded cables, one cannot if one wishes to obtain predictions approaching any degree of realism. Once the decision to include shield conductivity is made we may as well include the finite conductivity of all other conductors - very little additional processing is required.

Consequently, even though the program consumes quite a bit of computation time the processing time probably cannot be reduced substantially and still have the program handle all the intended functions and structures that it now handles.

The program (the single precision version) should be easily implementable on other machines since it is written in standard Fortran IV language. For lines with known and controlled, uniform cross sections, the program provides accurate predictions. For nonuniform or random type cable bundles such as many typical wire harnesses where the relative wire positions are unknown and uncontrolled along the cable length, one cannot necessarily expect the program to provide accurate predictions.

REFERENCES

- [1] C. R. Paul, Applications of Multiconductor Transmission Line Theory
 to the Prediction of Cable Coupling, Vol. VIII, Prediction of Crosstalk
 Involving Braided-Shield Cables, Technical Report, RADC-TR-76-101,
 Rome Air Development Center, Griffiss AFB, N.Y., August 1980.
- [2] C. R. Paul, "Effect of Pigtails on Crosstalk to Braided-Shield Cables,"

 IEEE Trans. on Electromagnetic Compatibility, Vol. EMC-22, No. 3,

 pp. 161-172, August 1980.
- [3] C. R. Paul, "Transmission-Line Modeling of Shielded Wires for Crosstalk Prediction," <u>IEEE Trans. on Electromagnetic Compatibility</u>, Vol. EMC-23, No. 4, pp. 345-351, November 1981.
- [4] AFSC DH 1-4, Electromagnetic Compatibility, Design Handbooks Branch (ASNPS-40), Air Force Systems Command, Wright-Patterson AFB, OH.
- [5] Electromagnetic Compatibility Design Guide for Avionics and Related
 Ground Support Equipment, NAVAIR AD 1115, Naval Air Systems Command,
 Dept. of the Navy, Washington, D.C., Change 2, December 1975.
- [6] Engineering Design Handbook, Electromagnetic Compatibility, DARCOM-P 706-410, HQ, U.S. Army Material Development and Readiness Command, Alexandria, VA, March 1977.
- [7] Private communication with Mr. John Prorok, U. S. Army CORADCOM, Ft. Monmouth, NJ.
- [8] Private communication with Mr. Gus Weinstock, McDonnell Aircraft Company, St. Louis, MO.
- [9] C. R. Paul, Applications of Multiconductor Transmission Line Theory to the Prediction of Cable Coupling, Vol. I, Multiconductor Transmission

 Line Theory, Technical Report, RADC-TR-76-101, Rome Air Development

 Center, Griffiss AFB, NY, April 1976 (A025028).

- [10] E. F. Vance, "Coupling to Cables", DNA Handbook Revision, Chapter 11, Stanford Research Institute, December 1974.
- [11] S. Shenfeld, "Coupling Impedance of Cylindrical Tubes", <u>IEEE Trans. on</u>

 <u>Electromagnetic Compatibility</u>, Vol. EMC-14, No. 1, pp. 10-16, February

 1972.
- [12] S. A. Schelkunoff, "The Electromagnetic Theory of Coaxial Transmission Lines and Cylindrical Shields", Bell Syst. Tech. J., Vol. 13, pp. 532-579, October 1934.
- [13] S. A. Schelkunoff and T. M. Odarenko, "Crosstalk Between Coaxial Transmission Lines", Bell Syst. Tech. J., Vol. 16, pp. 144-164, April 1937.
- [14] D. E. Merewether and T. F. Ezell, "The Effect of Mutual Inductance and Mutual Capacitance on the Transient Response of Braided-Shield Coaxial Cables", IEEE Trans. on Electromagnetic Compatibility, Vol. EMC-18, No. 1, pp. 15-20, February 1976.
- [15] R. W. Latham, An Approach to Certain Cable Shielding Calculations,
 Interaction Note 90, Air Force Weapons Lab, Albuquerque, NM, January 1972.
- [16] R. W. Latham, Small Holes in Cable Shields, Interaction Note 118,
 Air Force Weapons Lab, Albuquerque, NM, September 1972.
- [17] E. F. Vance, "Shielding Effectiveness of Braided-Wire Shields", <u>IEEE</u>

 <u>Trans. on Electromagnetic Compatibility</u>, Vol. EMC-17, No. 2, pp. 71-77,

 May 1975.
- [18] K. S. H. Lee and C. E. Baum, "Application of Modal Analysis to Braided-Shield Cables", IEEE Trans. on Electromagnetic Compatibility, Vol.EMC-17, No. 3, pp. 159-169, August 1975.

- [19] K. F. Casey and E. F. Vance, "EMP Coupling Through Cable Shields",

 IEEE Trans. on Electromagnetic Compatibility, Vol. EMC-20, No. 1,

 pp. 100-106, February 1978.
- [20] S. Frankel, "Terminal Response of Braided-Shield Cables to External Monochromatic Electromagnetic Fields", IEEE Trans. on Electromagnetic Compatibility, Vol. EMC-16, pp. 4-16, February 1974.
- [21] K. F. Casey, "On the Effective Transfer Impedance of Thin Coaxial Cable Shields", IEEE Trans. on Electromagnetic Compatibility, Vol. EMC-18, No. 3, pp. 110-116, August 1976.
- [22] EMP Interaction: Principles, Techniques and Data, Edited by

 K. S. H. Lee, Handbook for use in Workshop on EMP Hardening of Electronic

 Systems, 4th Symposium and Technical Exhibition on Electromagnetic

 Compatibility, Zurich, March 10-12, 1981.
- [23] F. M. Tesche, Coupling Between Twisted Wire Bundles: Analysis and

 Description of Computer Code TWERP, Technical Report, LuTech, Inc.,

 for Martin Marietta Aerospace, May 1981.
- [24] C. R. Paul and A. E. Feather, "Computation of the Transmission Line Inductance and Capacitance Matrices from the Generalized Capacitance Matrix", IEEE Trans. on Electromagnetic Compatibility, Vol. EMC-18, No. 4, pp. 175-183, November 1976.
- [25] G. Hadley, <u>Linear Algebra</u>. Reading, Mass.: Addison-Wesley, 1964, pp. 107-109.
- [26] IMSL, Sixth Floor, GNB Building, 7500 Bellaire Boulevard, Houston, Texas 77036 (Fifth Edition, November 1975).

- [27] C. R. Paul, Applications of Multiconductor Transmission Line Theory to the Prediction of Cable Coupling, Vol. VII, Digital Computer Programs for the Analysis of Multiconductor Transmission Lines, Technical Report, RADC-TR-76-101, Volume VII, Rome Air Development Center, Griffiss AFB, NY, July 1977, (A046662).
- [28] G. T. Capraro and C. R. Paul, "A Probabilistic Approach to Wire Coupling Interference Prediction", 4th Symposium and Technical Exhibition on Electromagnetic Compatibility, Zurich, Switzerland, March 10-12, 1981.

APPENDIX A

SHIELD Program Listing

```
*********SHLDC001
                                                                           38L00002
                  PROGRAM SHIELD
C
                                                                           SHLD0003
C
                   (FORTRAN IV, DOUBLE PRECISION)
                                                                           SHLDC004
C
                  WPITTEN BY
                                                                           SHLD0005
                        CLAYTON R. PAUL
                                                                           SHLD0006
C
                        DEPARTMENT OF ELECTRICAL ENGINEERING
C
                        UNIVERSITY OF KENTUCKY
                                                                           SHI 00008
C
                        LEXINGION, KENTUCKY 40506
                                                                           SELDOOO9
C
                                                                           SHLD0010
С
      A DIGITAL COMPUTER PROGRAM TO COMPUTE THE TERMINAL VOLTAGES OF
      A MUITICONDUCTOR TRANSMISSION LINE WHICH MAY CONSIST OF
C
                                                                           SHLD0012
C
      UNSHIELDED WIRES AND SHIELDED WIRES. THE SHIELDED WIRES
                                                                           SHLD0013
С
      MAY HAVE PIGTAIL SECTIONS AND THE PIGTAIL SECTION LENGTHS
                                                                           SHLD0014
C
      NEED NOT BE THE SAME.
                                                                           SHLD0015
С
С
      THE DISTRIBUTED PARAMETER, MULTICONDUCTOR TRANSMISSION LINE
                                                                           SHLD0017
С
      EQUATIONS ARE SCLVED FOR STEADY-STATE, SINUSOIDAL EXCITATION
                                                                           SHLD0018
C
      OF THE LINE.
                                                                           SHLD0019
С
                                                                           SHLD0020
      THE LINE CONSISTS OF NU UNSHIELDED WIRES AND NS SHIELDED WIRES.
C
                                                                           SHLD0021
C
      TPE WIRES MAY EE ABOVE A GROUND PLANE OR WITHIN AN OVERALL,
                                                                           SHLD0022
      CIRCULAR, CYLINDRICAL SHIELD. THE IMFEDANCES OF ALL CONDUCTORS
C
                                                                           SHLD0023
      ARE INCORPORATED INTO THE MODEL. THE SHIELDED WIRES MAY HAVE
C
                                                                           SHLD0024
C
      SOLID OR BRAIDED SHIELDS. THROUGH BRAID COUPLING FOR BRAIDED
                                                                           SHLD0925
      SHIFLDS IS INCORPORATED INTO THE MODEL.
С
                                                                           SHLD0026
                                                                           SHLD0027
C
      FUNCTION SUBPROGRAMS USED (AND SUPPLIED):
                                                                           SHLD0028
C
         LS1, LM1, LS2, LM2, S1B, LTB, ZWW, ZDE, ZSB, ZDS, ZSS
                                                                           SHL00029
C
                                                                           SHLD0030
C
      SUBROUTINES USED (AND SUPPLIED):
                                                                           ShLD0931
C
             MULTC, SCAP, INDUCT, PHI, ADMADD, IMPADD
                                                                           SHLD0032
c
                                                                           SHLD0033
C
      SUBROUTINES FROM THE IMSL PACKAGE USED:
                                                                           SHLD0034
C
          LEQTIC, EIGCC
                                                                           SHLD0036
                             IMPLICIT REAL+8 (A-H,O-Z)
                                                                           SHLD0038
      REAI*8 L, MU, MUO2PI, MUO4PI, LMAXR, LMINE, LMAXL, LMINL, LS1, LM1, LS2,
                                                                           SHLD0039
     1LM2, LTRAN, LTB, LTR, LTL, LSHLD, IOR, IOI, ILR, ILI
                                                                           SHLD0040
      CCMPLEX*16 ZG, JOMEGA, ONEC, ZEROC, SUMC, SUMC1, SUMC2, XJ, ZWW,
                                                                           SHLD0041
     1ZSS, ZDS, ZSE, ZDE, ZSELF, ZCIF, VWL, VWR, VSWI, VSWR
                                                                           SHLD0042
                                                                           SHLD0043
C
                                                                           SHLD0044
C
                                                                           SHLD0045
                                                                  C
c
      THE FOLLOWING MATRICES AND VECTORS SHOULD HAVE THE
                                                                           SHLD0046
C
      INDICATED DIMENSIONS WHERE
                                                                  C
                                                                           SHLD0047
C
                       NU=NUMEER OF UNSHIELDED WIRES
                                                                           SHLD0048
                                                                  C
C
                       NS=NUMBER OF SHIELDED WIRES
                                                                           SHLD 0049
c
                                                                  C
                       NUPS=NU+NS
                                                                           SHLD0050
C
                       NT=NU+NS+NS=TOTAL NUMBER OF CONDUCTORS
                                                                   C
                                                                           SHLD0051
C
                       TNT = 2 * NT
                                                                  C
                                                                           SHLD0052
                       INUPS=2*(NU+NS)
                                                                   C
                                                                           SHLD0053
C
                                                                  C
                                                                           SHLD0054
                                                                           SHLDCOSS
                                                                           SHLD0356
                                                                           SHLD0057
C#
                                                                           SHLD0058
C
                                                                           SHLD0059
                                                                  С
C
      IND (NT, NT), S (NT, NT), WK (2*NT (NT+1))
                                                                  С
                                                                           SHLD0060
                                                                  C
                                                                           SHLD0061
```

```
SHLD0062
       REAL+8 IND( 8, 8), SS( 8, 8), WK( 144)
                                                                                       SHLD0063
C4
                                                                                       SHLD0064
C
                                                                                       SHLD0065
C
                                                                                       SHLD0066
C
       Z(NI, NT), PHIR (TNT, TNT), WA (NT), YZ(NT, NI), T(NT, NT), GAM (NT),
                                                                                       SHLD 0067
C
       A (NI, NI), TI(NI, NI), Y(NI, NI), YINV (NI, NI), B (NI, NI),
                                                                             C
                                                                                       SHLD0068
C
                                                                                       SHLD0069
       PHII (TNT, TNT), C(NT, NT), D(NT, NT), EP(NT),
                                                                             C
C
       EN(NI), PHIL (TNT, TNT), TPHI (TNT, TNT), IO (NUPS), IL (NUPS),
                                                                                       SHLD0070
                                                                                      SHLD0071
       YO (NUPS, NUPS), YL (NUPS, NUPS)
                                                                             C
C
                                                                             C
                                                                                       SHLD0072
C
                                                                             C
                                                                                       SHLD0073
                                                                                       SHLD0074
       COMPLEX#16 2( 8, 8), PHIR (16, 16), WA ( 8), YZ ( 8, 8),
                                                                                       SHLD0075
      1T(8,8),GAR(8),A(8,8),TI(8,8),Y(8,8),YINV(8,8),
2B(8,8),PHIT(16,16),C(8,8),D(8,8),EP(8),
                                                                                       SHLD0076
                                                                                       SHLD0077
                                                                                       SHL D0078
      3EN( 8), PHIL(16,16), TPHI(16,16), IO( 5), IL( 5),
      4YO( 5, 5), YL( 5, 5)
                                                                                       SHLD0079
C#4
                                                                                       SHLD0080
C
                                                                             C
                                                                                       SHLD0081
C
                                                                             C
                                                                                       SHLD0082
C
                                                                             C
       THE FOLLOWING ARE OF DIMENSION
                                                                                       SHLD0083
C
C
                                                                             C
                                                                                       SHLD0084
       NOTF: IF NU=0, SET ALL DIMENSIONS=1
                                                                             С
                                                                                       SHLD0085
C
                                                                             С
                                                                                       SHLD0086
                                                                                       SHLD0087
C
                                                                                       SHLD0088
       INTEGER W(2), NWST(2)
                                                                                       SHLD0089
                                                                                       SHLD0090
       REAL *8 YW (2), ZW (2), RW (2), RWST (2), SIGNST (2)
       COMPLEX#16 ZWWV ( 2)
                                                                                       SHLD CO91
C*4
                                                                                       SHLD0092
C
                                                                             C
                                                                                       SHLD 0093
Č
                                                                             C
                                                                                       SHLD0094
C
       THE FOLLOWING ARE OF DIMENSION
                                                                             ¢
                                                                                       SHLD0095
C
                                                                                       SHLD0096
                                                                             C
C
       NOTE: IF NS=0, SET ALL DIMENSIONS=1
                                                                             C
                                                                                       SHLD 0097
C
                                                                             С
                                                                                       SHLD0098
                                                                                       SHLD0099
C
                                                                                       SHLD0100
C***
       INTEGER S( 3), STYPE( 3), NWH( 3), BELT( 3), NPB( 3), NPI( 3),
                                                                                       SHLD0101
      1MPR ( 3), IGNDL ( 3), IGNDR ( 3), KEY ( 3)
                                                                                       SHLD0102
       RFAL*8 YS (3), ZS (3), RS (3), ERS (3), RWH (3), RWHST (3), SIGWHS (3),
                                                                                       SHLD 0103
      1TS( 3), SIGS( 3), RB( 3), SIGB( 3), THB( 3), LFL( 3), RPL( 3), THPL( 3), SHLD0104
2RPB1( 3), SIGPWL( 3), RPWSTL( 3), LPR( 3), RPB( 3), THPR( 3), RPWR( 3), SHLD0105
      3RPWSTR(3),SIGPWR(3),LPT(3),LTV(3),STV(3),
                                                                                       SHLD0106
      4YPL(3), ZPL(3), YPR(3), ZPR(3)
COMPLEX*16 ZSV(3), ZDV(3), ZWPLV(3), ZWPRV(3), ZWWHV(3)
                                                                                       SHLD0107
                                                                                       SHLD0108
                                                                                       SHLD0109
C
                                                                                       SHLD0110
C
       END DIMENSION STATEMENTS
                                                                                       SHL D0 111
C
                                                                                       SHLD0112
Ċ
                                                                                       SHLD0113
       COMMON /RCOM/ ZERO, ONE, TWC, THREE, FOUR, MU, MUO2PI, MUO4PI,
                                                                                     . SHLD0114
      1PI, RADEG, ERTE, SIGCOP, R, F, V2
                                                                                       SHLD0115
       COMMON /CCON/ ZEROC, ONEC, XJ, JONEGA
                                                                                       SHLD0116
                                                                                       SHLD0117
       ZERO=0. D0
                                                                                       SHLD0118
       ONE = 1. DO
       TWO=2. DO
                                                                                       SHLD0119
       THREE= 3. DO
                                                                                       SHLD0120
                                                                                       SHLD0121
       PCUB=4.DO
                                                                                       SHLD0122
       CHTH=2.54D-5
```

```
MUO 2PI= 2. D-7
                                                                          SHLD0123
   #004FI=1.D-7
                                                                          SHLD0124
  ONE80=180.D0
                                                                          SHLD0125
   V=2.997925D8
                                                                          SHL DO 126
                                                                          SHLD0127
  SIGCOP=5.8D7
  ONEC=DCMPLX (ONE, ZERO)
                                                                          SHLD0128
  ZFRCC=DCMPLX (ZERO, ZERO)
                                                                          SHL DO 129
   XJ=DCMPIX(ZERO,ONE)
                                                                          SHLD0130
                                                                          SHLD0131
  PI=FOUR+DATAN (ONE)
   RADEG=ONE80/PI
                                                                          SHLD0132
   MU=FUO2PI *TWO*PI
                                                                          SHLD0133
   ¥ 2= ¥ *V
                                                                          SHLD0134
   EST E=ONP/ (MU + V 2)
                                                                          SHLD0135
                                                                          SHLD0136
                                                                          SHLD0137
   REAC INPUT DATA
                                                                          SHLD0138
                                                                          SHLD0139
                                                                          SHLD0140
   REAC(5,1) NTYPE, I, NU, NS
                                                                          SHLD0141
 1 FCRMAT (11/E10.3/12/12)
                                                                          SHLD0142
   WRITE (6,2)
                                                                          SHLD0143
 2 PORMAT (*1*)
                                                                          SHL DO 144
   IF (NTYPE. EQ. 1) GO TO 3
                                                                          SHLD0145
                                                                          SHLD0146
   IF (NTYPE.EQ.2) GO TO 3
                                                                          SHLD0147
   GO TO 220
                                                                          SHLD0148
 3 CCNTINUE
   IF (NU. EQ. O. AND. NS. EQ. O) GO TO 220
                                                                          SHLD0149
                                                                          SHLD0150
   NT=NU+NS+NS
   NUPS=NU+NS
                                                                          SHLD0151
                                                                          SHLD0152
   TNUPS=NUPS+NUPS
   TNT=NT+NT
                                                                          SHLDU153
                                                                          SHLD0154
   NNU=NU
   IF (NU. EQ. 0) NNU=1
                                                                          SHLD0155
   NNS=NS
                                                                          SHLD0156
                                                                          SHLD0157
  IF(NS.EQ.O) NNS=1
   WRITE(6,4) NU,NS,L
                                                                          SHLD0158
 4 FORMAT (50X, PROGRAM SHIELD ////47X, 12.
                                                                          SHLD0159
  1º UNSHIELDED WIRES .//48x,12,
                                                                          SHLD0160
  2' SHIELDED WIRES'//
                                                                          SHLD0161
  342x, 'LINE LENGTH (METERS) = ', 1PE11.3///)
                                                                          SHLD0162
   IF(NTYFE.EQ. 1) GO TO 7
                                                                          SHLD0163
                                                                          SHLD0164
   READ (5,5) R
                                                                          SHLD0 165
 5 FCRMAT (10x, E10.3)
   WRITE (6,6) R
 6 FORMAT (10x, BEFERENCE CONDUCTOR IS AN OVERALL, CIRCULAR, CYLINDRICAL SHLD0167
  1 SHIFLD WITH INTERIOR RADIUS= 1,19810.3,1 (HETERS) 1///)
                                                                          SHLD0168
   GO 10 9
                                                                          SHLD0169
                                                                          SHLD017C
 7 CONTINUE
   WRITE (6,8)
                                                                          SHL DO 171
 8 FORMAT (40%, * REFERENCE CONDUCTOR IS A GROUND PLANE*///)
                                                                          SHLD0172
                                                                          SHLD0173
 9 CONTINUE
   IF(NU. EQ. 0) GO TO 18
                                                                          SHLD0174
                                                                          SHLD0175
   WRITE (6,10)
10 FORMAT (////45x, DATA FOR THE UNSHIELDED WIRES 1///)
                                                                          SHLD0176
                                                                          SHLDU171
   WRITE (6, 11)
11 FORMAT (1x, "YW= WIRE HEIGHT ABOVE GROUND (METERS) OR RADIAL DISTANCSHLD0178
                                                                          SHLD0179
  1e PBCM CENTER OF SHIELD (METERS) 1/
  21x, "ZW = HORIZONTAL COORDINATE (HETERS) OR ANGULAR PCSITION (DEGREESHLD0180
  3S) '/1x,'RW= WIRE RADIUS (MILS) '/
                                                                          SHLD0181
  41x, 'NWST= NUMBER OF WIRE STRANDS'/
                                                                          SHLD0182
  51x, 'RWST = RADIUS OF WIRE STRANDS (MILS) 1/
                                                                          SHLD0183
```

```
61%, SIGNST= CONDUCTIVITY OF WIRE STRANDS (RELATIVE TO COPPER) */// SHLD0184
                                                                                SHLD0185
   WRITE(6, 12)
                                                                               SHLD0186
12 FORMAT (1X, "WIRE", 6X, "YH", 16X, "ZH", 16X, "RW", 12X, "NWST", 8X, "RWST",
                                                                               SHLD0187
  116x,'SIGWST'/)
                                                                               SHLD0188
   DO 17 I=1, NU
                                                                               SHLD0189
   READ (5,13) W(I), YW(I), ZW(I)
                                                                               SHLD0190
13 PCRMAT (12,8X,E10.3,10X,E10.3)
RFAD (5,14) RW (1), NWST (1), RWST (1), SIGNST (1)
                                                                               SHLDC191
                                                                               SHLD0192
14 FORMAT (10X, E10.3, 13X, 12, 15X, E10.3, 10X, E10.3)
                                                                               SHLD0193
   WRITE (6, 15) W (1), YW (1), ZW (1), RW (1), NWST (1), RWST (1), SIGWST (1)
                                                                                SHLDC194
15 FORMAT (2X, 12, 3X, 1PE10. 3, 8X, 1PE10. 3, 8X, 1PE10. 3, 9X, 12,
                                                                               SHL00195
  15 x, 1PE 10.3, 11x, 1PE 10.3)
                                                                               SHLD0196
   RW(I) = RW(I) + CMTM
                                                                               SHLD0197
   RWST(I) = RWST(I) + CMTM
                                                                               SHLD0198
   IF (NTYPE_EQ. 1) GO TO 16
                                                                               SHLD0199
   ZW(I) = ZW(I) / RADEG
                                                                               SHLD0200
16 CONTINUE
                                                                               SHLD0201
17 CONTINUE
                                                                                SHLD0202
18 CONTINUE
                                                                               SHLD0203
   IF(NS. EQ. 0) GO TO 58
                                                                               SHLD0204
   WRITE (6,19)
                                                                               SHLD0205
19 FORMAT (////45x, DATA FOR THE SHIELDED WIRES 1///)
                                                                               SHLD0206
   WRITE (6, 20)
                                                                               SHLD0207
20 FORMAT (1x, "YS= SHIELD HEIGHT ABOVE GROUND (METERS) OR RADIAL DISTASHLD0208
  INCE FROM CENTER OF SHIELD (METERS) 1/
                                                                                SHLD0209
  21x, 2x= HORIZONTAL COORDINATE (METERS) OR ANGULAR POSITION (DEGREESHIDO 210
  3S) 1/1X, RS= INTERIOR SHIELD RADIUS (METERS) 1/
                                                                               SHLD0211
  41x, 'ERS= RELATIVE PERMITTIVITY OF INTERIOR DIELECTRIC'/
                                                                                SHLD0212
  51x, 'RW= SHIELDED WIRE RADIUS (MILS) 1/
                                                                               SHLD0213
  61%, 'NWST= NUMBER OF SHIELDED WIRE STRANDS'/
                                                                               SHLD0214
  71x, 'BWST= RADIUS OF SHIELDED WIRE STRANDS (MILS) 1/
                                                                                SHLD0215
  81%, SIGNST= CONDUCTIVITY OF SHIELDED WIRE STRANDS (RELATIVE TC COPSHLD0216
  9PER) 1///)
                                                                               SHLD0217
   WRITE (6, 21)
                                                                               SHLD0218
21 FORMAT(2X, 'SHIELD', 8X, 'YS', 13X, 'ZS', 13X, 'RS', 13X, 'ERS', 12X, 'RW', 110X, 'NWST', 9X, 'RWST', 11X, 'SIGWST', //)
                                                                               SHLD0219
                                                                               SHLD0220
   NTHER= 0
                                                                               SHLD0221
   NSTYP=0
                                                                               SHLD0222
   DC 32 I=1,NS
                                                                               SHLD0223
REAC (5, 22) S(I), STYPE (I), YS(I), ZS(I)
22 PCRFAT (I2, 7x, I1, 10x, E10.3, 10x, E10.3)
                                                                               SHLD0224
                                                                               SHLD0225
   IP(STYPE(I).EQ. 1) GO TC 23
                                                                               SHLD0226
   IF(STYPE(I).EQ.2) GO TO 23
                                                                               SHLD0227
   NSTYP= 1
                                                                               SHLD0228
23 CCNTINUE
                                                                               SHLD0229
   READ (5, 24) RS(I), ERS(I), RWH(I), NWH(I), RWHSI(I), SIGWHS(I)
                                                                               SHLD0230
24 FORMAT (10x,3(E10.3), 10x,4x,12,4x,2(E10.3))
                                                                               SHLD0231
   ITYFE=STYPE(I)
                                                                               SHLD0232
   GO TO (25,27), ITYPE
                                                                               SHLD0233
25 CONTINUE
                                                                               SHLD0234
   READ (5,26) TS (1), SIGS (1)
                                                                               SHLD0235
26 FORMAT (10x, 2(E10.3))
                                                                               SHLD0236
   GC TC 29
                                                                               SHLD0237
27 CONTINUE
                                                                               SHLD0238
   RFAD (5, 28) RB(I), SIGB(I), THB(I), BELT(I), WPB(I)
                                                                               SHLD0239
28 FORMAT (10X, 3 (E10.3), 3X, 12, 8X, 12)
                                                                               SHLD0240
   IF (THB (I) . LT. ZERO. OR. THE (I) . GT. 45. DO) NTHER=1
                                                                               SHLD0241
29 CONTINUE
                                                                               SHLD0242
   READ (5,30) LPL(I), RPL(I), THPL(I), FPWI(I), NPL(I), RPWSTL(I),
                                                                               SHLD0243
  1SIGPAL(I)
                                                                               SHLD0244
```

```
30 FORMAT (10x, 3 (E10.3) / 10x, E10.3, 3x, 12, 5x, 2 (E10.3))
                                                                             SHLD0245
   RFAC(5,31) LPR(I), RPR(I), THPR(I), BPWF(I), NPR(I), RPWSTF(I),
                                                                             SHLD0246
  1SIGPWR (I)
                                                                             SHLD0247
31 FORMAT (10x, 3 (E10.3) / 10x, E10.3, 3x, 12, 5x, 2 (E10.3))
                                                                             SHLD0248
32 CONTINUE
                                                                             SHLD0249
   IF (NTHER. EQ. 1) GO TO 220
                                                                             SHLD0250
   IP(NSTYP.EQ.1) GO TO 220
                                                                             SHLD0251
   DO 35 I=1,NS
                                                                             SHLD0252
   WBITE (6,33) S(I), YS(I), ZS(I), BS(I), EBS(I), RWH(I), NWH(I),
                                                                           RWSHLD0253
  1HST(I),SIGWHS(I)
                                                                             SHLD0254
33 FORMAT (3X,12,7X, 1PE10.3,5X, 1PE10.3,5X, 1PE10.3,5X, 1PE10.3,
                                                                             SHLD0255
  15x, 1PE10.3,7x,12,7x, 1PE10.3,5x, 1PE10.3)
                                                                             SHLD0256
   RWH (I) = RWH (I) *CMTM
                                                                             SHLD0257
   RWHST(I) = RWHST(I) *CMTM
                                                                             SHLD0258
   IP (NTYPE.EQ.1) GO TO 34
                                                                             SHLD0259
   ZS(I) = ZS(I) / RADEG
                                                                             SHLD0260
34 CONTINUE
                                                                             SHLD0261
35 CONTINUE
                                                                             SHLD0262
   WRITE (6, 36)
                                                                             SHLD0263
36 FORMAT (////35x, "SHIELD CHARACTERISTICS"//)
                                                                             SHLD0264
   WRITE(6,37)
                                                                             SHLD0265
37 PORMAT (1x, 'TS= SOLID SHIELD THICKNESS (MILS) '/
                                                                             SHLD0266
  11x, 'SIGS= SOLID SHIELD CONDUCTIVITY (RELATIVE TO COPPER) '/
                                                                             SHLD0267
  21x, BB= RADIUS CF BRAIC WIRES (MILS) 1/
                                                                             SHLD0268
  31x, 'SIGB= BRAID WIRE CONDUCTIVITY (RELATIVE TC COPPER) 1/
                                                                             SHLD0269
  41X, "THB= BRAID WEAVE ANGLE (DEGREES) "/
                                                                             SHLD0270
  51x, BELTS = NUMBER OF BELTS IN BRAID'/
                                                                             SHLD0271
  61x, 'WPB= NUMBER OF WIRES PER BELT'///)
                                                                             SHLD0272
   WRITF (6, 38)
                                                                             SHLD0273
                                                                             SHLD0274
38 FCRMAT (2X, "SHIELD", 4X, "TYPE", 8X, "TS", 13X, "SIGS", 14X, "RB", 16X,
  1'SIGE', 11X, 'THB', 10X, 'BELTS', 10X, 'WPB'//)
                                                                             SHLD0275
   DC 43 I=1,NS
                                                                             SHLD0276
   IP(STYPE(I).EQ.2) GO TC 40
WRITE(6,39) S(I), IS(I), SIGS(I)
                                                                             SHLD0277
                                                                             SHLD0278
39 FORMAT (3X,12,6X,*SOLID*,4X,1PE10.3,5X,1PE10.3)
                                                                             SHLD0279
                                                                             SHLD0280
   TS(I) = TS(I) + CHTM
   RS(I) = RS(I) + TS(I)
                                                                             SHLD0281
   GC TO 42
                                                                             SHLD0282
40 CCNTINUE
                                                                             SHLD0283
WRITE(6,41) S(I),RB(I),SIGB(I),THB(I),BELT(I),WPB(I)
41 FORMAT(3X,I2,5X,'BRAIDED',35X,1PE10.3,8X,1PE10.3,5X,1PE10.3,9X,
                                                                             SHLD0284
                                                                             SHLD0285
                                                                             SHLD0286
  112,12X,12)
   RE(I) = RB(I) * CMTM
                                                                              SHLD0287
   TS(1) = TWO * RB(1)
                                                                             SHLD0288
   RS(I) = RS(I) + TS(I)
                                                                              SHLD0289
                                                                             SHLDC290
   THB (I) =THP(I) /RADEG
42 CONTINUE
                                                                             SHL 00291
43 CONTINUE
                                                                             SHLD0292
                                                                             SHLD 029J
   WRITE (6,44)
44 FORMAT(///, 39x, DATA FOR THE PIGTAILS*//)
WRITE(6,45)
                                                                             SHLD0294
                                                                             SHLD0295
45 FORMAT (42X, LEFT PIGTAILS 1//)
                                                                             SHLD0296
   WRITE (6,46)
                                                                             SHLD0297
46 FORMAT (1x, LPL= LENGTH OF LEFT PIGTAIL (METERS) 1/
                                                                             SHLD0298
  11x BPL = RADIAL SEPARATION OF PIGTAIL WIRE FROM SHIELDED WIRE (METSHLD0299
  2ERS) 1/
                                                                             SHLD0300
  31x, THPL= ANGULAR POSITION OF PIGTALL WIRE (DEGREES) 1/
                                                                              SHLD0301
  41x, 'spwl = RACIUS OF PIGTAIL WIRE (MILS) '/
                                                                             SHLD0302
  51x, 'NPL= NUMBER OF STRANDS IN PIGTAIL WIRE'/
                                                                             SHLD0303
  611, BPWSTL= RADIUS OF PIGTAIL WIRE STRANDS (MILS) 1/
                                                                             SHLD0304
  71x, SIGPUL = CONDUCTIVITY OF PIGTAIL WIRE STRANDS (RELATIVE TO COPPSHIDO305
```

```
8ER) '//)
                                                                                                                                    SHLDC306
     WRITE (6,47)
                                                                                                                                    SHLD0307
47 FORPAT (1x, SHIELD , 9x, LPL , 14x, BFL , 12x, THPL , 10x, RPWL , 9x,
                                                                                                                                    SHLD0308
    1'NPL', 9X, 'RPWSTL', 12X, 'SIGPWL'//)
                                                                                                                                    SHLD0309
     DC 49 I=1,NS
                                                                                                                                    SHLD0310
                                                                                                                                RPSHLD0311
     WRITE(6,48) S(I), LPL(I), RPL(I), THEL(I), RPWL(I), NPL(I),
    1WSTL(I),SIGPWL(I)
                                                                                                                                    SHLD0312
48 FORMAT (3X,12,7X,12E10.3,7X,1PE10.3,5X,1PE10.3,4X,1PF10.3,7X,
                                                                                                                                    SHLD0313
    112,7x,1PE10.3,8x,1PE10.3)
                                                                                                                                    SHLDONIA
                                                                                                                                    SHLD0315
     RPWL(I) = RPWL(I) + CMTM
     RPWSTL(I) = RPWSTL(I) + CMIM
                                                                                                                                    3HLD0 116
                                                                                                                                    SHLD0317
     THPL (I) = THPL (I) / RADEG
49 CONTINUE
                                                                                                                                    SHLD0318
     WRITE (6,50)
                                                                                                                                    SHLD0319
50 FCRMAT (///, 42X, 'RIGHT PIGTAILS'//)
                                                                                                                                    SHLD0320
     WRITE(6,51)
                                                                                                                                    SHLD0321
51 PCRMAT(1x, LPR= LENGTH CF RIGHT PIGTALL (MFTERS) 1/
                                                                                                                                    SHLD0322
    11x, PPR= RADIAL SEPARATION OF PIGTALL WIBE FROM SHIELDED WIRE (METSHLD0323
    2ERS) 1/
                                                                                                                                   SHLD0324
    31X, THPR= ANGULAR POSITION OF PIGTALL WIRE (DEGREES) 1/
                                                                                                                                    SHLD0325
    41x, 'BPWR= RACIUS OF PIGTAIL WIRE (MILS) '/
                                                                                                                                    SHLD0326
    51x, 'NPR= NUMBER OF STRANDS IN PIGTAIL WIRE'/
                                                                                                                                    3HLD0327
    61x, *FPWSTR= RADIUS OF FIGTAIL WIRE STRANDS (MILS) */
                                                                                                                                    SHLD0328
    71%, SIGPUR CONDUCTIVITY OF PIGTAIL WIRE STRANDS RELATIVE TO COPPESHLD0329
    8R) 1//)
                                                                                                                                   SHLDC330
     WRITE (6,52)
                                                                                                                                    SHLD0331
52 FORMAT (1x, 'SHIELD', 9x, 'LPR', 14x, 'FPB', 12x, 'THPR', 10x,
                                                                                                                                    SHLD0332
    1'RPWR',9X,'NPR',9X,'RPWSTR',12X,'SIGPWR'//)
                                                                                                                                    S3LD0333
     DC 54 I=1,NS
                                                                                                                                    SHLD0334
      WRITE (6,53) S(I), LPR(I), RPB(I), THER(I), RPWR(I), NPR(I),
                                                                                                                                RPSHLD0335
    1WSTR(I),SIGPWR(I)
                                                                                                                                    SHLD0336
53 FCRMAT(3x,12,7x,1PE10.3,7x,1PE10.3,5x,1PE10.3,4x,1PE10.3,
                                                                                                                                    SHLD0337
    17x,12,7x,1PE10.3,8x,1PE10.3)
                                                                                                                                    SHLD0338
     RPWR(I) = RPWR(I) *CMTM
                                                                                                                                    SHLD0339
      RPWSTR(I) = RPWSTR(I) *CMIM
                                                                                                                                    SHLD0340
     THPR (I) = THPR (I) / RADEG
                                                                                                                                    SHLD0341
54 CONTINUE
                                                                                                                                    SHLDC342
     DC 57 I=1,NS
                                                                                                                                    SHLD0343
      IF (NTYFE.EQ.2) GO TO 55
                                                                                                                                    SHLD0344
     YPL(I) = YS(I) + RPL(I) + DSIN(THPL(I))
                                                                                                                                    SHLD0345
      ZPL(I) = ZS(I) + RPL(I) * DCOS(THPL(I))
                                                                                                                                    SHLD0346
      YPR (I) =YS (I) + RPR (I) + DSIN (THPR (I) )
                                                                                                                                    SHLD0347
     ZPR (I) = ZS (I) + RPR (I) + DCOS (THPR (I))
GO TO 56
                                                                                                                                    SHLDC343
                                                                                                                                    SHLD0349
55 CONTINUE
                                                                                                                                    SHLD0350
      YPL(I) = DSQRT(YS(I) **2+RPL(I) **2-TWO*YS(I) *RPL(I) *DCCS(THPL(I)))
                                                                                                                                    SHLD0351
      ZPL (1) = 2S(1) + DATAN2 ( (RPL (1) + DSIN (THFL (1) ) ) , (YS(1) +
                                                                                                                                    SHLD0352
                                                                                                                                    SHLD0353
    1RPL (I) *DCOS (THPL (I))))
      YPR (I) = DSQRT (YS (I) **2+RPR (I) **2-TWC*YS (I) *RPR (I) *DCCS (THPR (I) ))
                                                                                                                                    SHLD0354
                                                                                                                                    SHLD0355
     ZPR(I) = ZS(I) + DATAN2((RFR(I) + DSIN(THFR(I))), (YS(I) + DSIN(THFR(
    1RPR (I) *DCOS (THPR (I) ) )
                                                                                                                                    SHLD0356
56 CONTINUE
                                                                                                                                    SHLD0357
57 CCNTINUE
                                                                                                                                    SHLD0358
                                                                                                                                    SHLD0359
58 CCNTINUE
      WRITE (6,59)
                                                                                                                                    SHLD0360
59 FORMAT (///, 33X, TERMINAL SCURCE AND IMPEDANCE DATA*///)
                                                                                                                                    SHLD0361
      WRITE (6,60)
60 FORMAT (1x, FIOR= REAL PART OF CURRENT SOURCE EFFWEEN WIRE AND REFERSHLD0363
    1ENCE CONDUCTOR AT X=0'/
                                                                                                                                    SHLD0364
    21x, 'IOI = IMAG PART OF CURRENT SOURCE EFTWEEN WIRE AND REFERENCE COSHLD0365
    3NEUCTOR AT X=0'/
                                                                                                                                    SHLD0366
```

```
41X, 4YOR= REAL PART OF ADMITTANCE PETWEEN WIRE AND REFERENCE CONDUCSHIDO367
  STCR AT X=0 1/
                                                                                SHLD0368
  61x, YOI = IMAG PART OF ADMITTANCE FETWEEN WIRE AND REFERENCE CONDUCSHLD0369
  7TCR AT X=0'/
                                                                                SHLD0370
  81x, 'ILR= REAL PART OF CURRENT SOUBCE BETWEEN WIRE AND REFERENCE COSHLD0371
  9NEUCTOR AT X=L*/
  A1X, 'ILI= IMAG PART OF CURBENT SOURCE EETWEEN WIRE AND REFERENCE COSHLD0373
  ENCUCTOR AT X=L*/
  C1x, 'YLR= REAL PART OF ADMITTANCE EETWEEN WIRE AND REFERENCE CONDUCSHLD0375
  DTOR AT X=L*/
                                                                                SHLD 0376
  EIX, 'YLI= IMAG PART OF ADMITTANCE BETWEEN WIRE AND REFERENCE CONDUCSHLD0377
  PTOR AT X=L*///)
                                                                                SHLD0378
   WRITE (6,61)
                                                                                SHLD0379
61 FORMAT(1X, WIRE', 8X, 'IOR', 12X, 'IOI', 12X, 'YOR', 12X, 'YOI', 12X, 1'ILB', 12X, 'ILI', 12X, 'YIR', 12X, 'YLI'//)
                                                                                SHLD0380
                                                                                SHLD0381
   IF (NU.EC.O) GC TC 65
                                                                                SHLD0382
   DO 64 I=1,NU
                                                                                SHLD0383
   READ (5,62) IOR, IOI, YOR, YOI, ILR, ILI, YER, YLI
                                                                                SHLD0384
62 FCRMAT (8 (E10.3))
                                                                                SHLD0385
   WRITE(6,63) I, IOR, IOI, YOR, YOI, ILR, ILI, YLR, YLI
                                                                                SHLD0386
63 FCRMAT(2X,12,5X,1PE10.3,5X,1PE10.3,5X,1PE10.3,5X,1PE10.3,5X,
                                                                                SHLD0387
  11PE 10. 3,5x, 1PE 10. 3,5x, 1PE 10. 3,5x, 1PE 10. 3)
                                                                                SHLD0388
   IO(I) = IOR+XJ*IOI
                                                                                SHLD0389
   IL(I)=ILR+XJ*ILI
                                                                                SHLD0390
   YO (I,I) = YOR + XJ * YOI
                                                                                SHLD 0391
64 \text{ YL}(I,I) = \text{YLR} + \text{XJ} + \text{YLI}
                                                                                SHLD0392
65 CONTINUE
                                                                                SHLD0393
   IF (NS. EC. 0) GC TO 73
                                                                                SHLD0394
                                                                                SHLD0395
   NISR=0
   NVSR=0
                                                                                SHLD0396
   NISI=0
                                                                                SHLDC397
   NVSL=0
                                                                                SHLDC398
   WRITE (6,66)
                                                                                SHLD0399
66 FORMAT (//, 1x, 'SHIELDED WIRE', 3x, 'IOR', 12x, 'IOI', 12x, 'YOR', 12x
                                                                                SHLD0400
  1, 'YOI', 12X, 'ILR', 12X, 'ILI', 12X, 'YLR', 12X, 'YLI'//)
                                                                                SHLD0401
   NGNDR=0
                                                                                SHLD0402
   NGNDI=0
                                                                                SHLD0403
   DC 72 I=1,NS
                                                                                SHLD0404
   READ (5,67) IOR, IOI, YOR, YOI, ILR, ILI, YIR, YII
                                                                                SHLD0405
67 FORPAT (8 (E10.3))
                                                                                SHLD0406
   WRITE(6,68) I, IOR, IOI, YCR, YOI, ILR, ILI, YLR, YLI
                                                                                SHLD0407
68 FOREAT (3x,12,8x,1PE10.3,5x,1PE10.3,5x,1PE10.3,5x,1PE10.3,5x,
                                                                                SHLD0408
  11PE10.3,5x,1PE10.3,5x,1PE10.3,5x,1PE10.3)
                                                                                SHLD0409
   10(I+NU)=IOR+XJ*IOI
                                                                                SHLD0410
   II(I+NU)=ILR+XJ*ILI
                                                                                SHLD0411
   YO(I+NU,I+NU) = YOR+XJ+YOI
                                                                                SHLD 04 12
   YL(I+NU,I+NU) =YLR+XJ*YLI
                                                                                SHLD0413
   READ (5,69) IGNDL (1), IGNDR (1)
                                                                                SHLD0414
69 FORMAT (9X,11,29X,11)
                                                                                SHLD 0415
   IF (IGNDL (I) . EQ. 1) GO TO 70 IF (IGNDL (I) . EQ. 2) GO TO 70
                                                                                SHLD0416
                                                                                SHLD0417
   NGNDI=1
                                                                                SHLD0418
70 CONTINUE
                                                                                SHLD0419
   IF (IGNDR (I) . EQ. 1) GO TC 71
IF (IGNDR (I) . EQ. 2) GO TC 71
                                                                                SHLD0420
                                                                                SHLD0421
   NGN CR= 1
                                                                                SHLD0422
71 CCNTINUE
                                                                                SHLD0423
   IF (IGNOR (I) . EQ. 1) NISR=NISR+1
                                                                                SHLD0424
   IF (IGNDR (I) . EQ. 2) NVSR = NVSR+1
                                                                                SHLD0425
   IP(IGNDL(I).EQ.1) NISL=NISL+1
                                                                                SHLD0426
   IP(IGNDI(I).EC.2) NVSL=NVSL+1
                                                                                SHLD0427
```

```
72 CONTINUE
                                                                             SHLD 0428
   IF (NGNDL. EQ. 1.OR.NGNDR. EQ. 1) GO TO 220
                                                                            SHLD0429
73 CCNTINUE
                                                                            SHLD0430
   K1=NUPS-1
                                                                            SHLD0431
   DC 75 I=1,K1
                                                                             SHLD0432
   IP1=I+1
                                                                             SHLD0433
   DO 75 J=IP1, NUPS
                                                                             SHLD 04 34
   READ(5,74) YOR, YOI, YLR, YLI
                                                                            SHLD0435
74 FORMAT (20X, 2 (E10.3), 20X, 2 (E10.3))
                                                                             SHLD 04 36
   YO (I, J) = YOR + XJ + YOI
                                                                            SHIDC437
   YL(I,J) =YLR+XJ*YLI
                                                                             SHLD0438
   YO(J,I) = YO(I,J)
                                                                            SHL00439
75 YI(J,I) = YI(I,J)
                                                                             SHLD0440
   WRITE (6, 76)
                                                                             SHLD0441
76 PCRMAT (//, 10x, 'IMPEDANCES BETWEEN WIRES'//)
                                                                            SHLD0442
   IF (NU. EQ. 0) GO TO 80
                                                                             SHLDO443
   WRITE(6,77)
                                                                             SHLD0444
77 FORMAT (1X, "WIPE", 2X, "WIRE", 18X, "YCR", 12X, "YOI", 12X, "YIR", 12X,
                                                                             SHLD0445
  1'YLI'//)
                                                                             SHLD 0446
   4KN = NO - 1
                                                                            SHLD0447
   DC 79 I=1, MKN
                                                                             SHLD0448
   IF1=I+1
                                                                             SHLD 0449
   DC 79 J=IP1,NII
                                                                            SHLD0450
   WRITE(6,78) I,J,YO(I,J),YL(I,J)
                                                                             SHLD0451
78 FORMAT (2x,12,4x,12,15x,1PE10.3,5x,1PE10.3,5x,1PE10.3,5x,1PE10.3)
                                                                            SHLD C452
79 CCNTINUE
                                                                            SHLD0453
80 CCNTINUE
                                                                             SHLD0454
   IF (NU.EQ.O.OR.NS.EQ.O) GO TC 84
                                                                             SHLD0455
   WEITE(6,81)
                                                                             SHLD0456
81 FCRMAT(///, 1x, *WIRE*, 2x, *SHIELDED WIRE*, 12x, *YOR*, 12x, *YOI*, 12x, 1*YLR*, 12x, *YLR*//)
                                                                            SHLD0457
                                                                             SHLD 0458
   DC 83 I=1,NU
                                                                            SHLD0459
   DC 83 J=1,NS
                                                                             SHLD0460
   WRITE(6,82) I,J,YO(I,J+NU),YL(I,J+NU)
                                                                             SHLD 0461
82 FORMAT (2X,12,7X,12,15X,1PE10.3,5X,1PE10.3,5X,1PE10.3,5X,
                                                                             SHLD0462
  11PE 10. 3)
                                                                             SHLD0463
83 CCVIINUE
                                                                             SHLD0464
84 CCNTINUE
                                                                             SHLD0465
   IF(NS.EQ.0) GC TO 100
                                                                             SHLD0466
   WRITE (6,85)
                                                                             SHLD 0467
85 FCRMAT(///. 1x, 'SHIELDED WIRE', 2x, 'SHIELDED WIRE', 7x,
                                                                             SHLD0468
  1'YOR', 19X, 'YOI', 19X, 'YLB', 19X, 'YLI'//)
                                                                             SHLD0469
   MKS=NS-1
                                                                             SHLDC470
   DC 87 I=1,MKS
                                                                             SHLD0471
   IP1=I+1
                                                                             SHLD0472
   DC 87 J=IP1, NS
                                                                             SHLD0473
   WRITE(6,86) I,J,YO(I+NU,J+NU),YL(I+NU,J+NU)
                                                                             SHLD0474
86 FCRMAT (5x,12,13x,12,10x,1PE10.3,12x,1PE10.3,12x,1PE10.3,
                                                                             SHLD0475
  112X, 1PE10.3)
                                                                             SHLD 0476
87 CONTINUE
                                                                             SHLD0477
   WRITE (6,88)
                                                                            SHLD0478
88 FCRMAT (///, 20X, SHIELD TERMINATION DATA 1/)
                                                                             SHLDC479
   WRITE(6,89)
                                                                             SHLD0480
89 FCRMAT(1X, "SHIELD", 5X, "TERMINATION AT X=0",
                                                                             SHLD0481
  110x, TERMINATION AT X=L*//)
                                                                            SHLD0482
   DO 99 I=1,NS
                                                                            SHLD0483
   IF(IGNDL(I).EQ. 1. AND. IGNDR(I).EQ. 1) GC TO 90
                                                                            SHLDOUBU
   IF (IGNDL (I) . EQ. 1. AND. IGNDR (I) . EQ. 2) GO TO 92
                                                                            SHLDC485
   IF(IGNDL(I).EQ.2.AND.IGNDR(I).EQ.1) GO TO 94
                                                                            SHLD0486
   IF (IGNDL(I).EQ.2.AND.IGNDR(I).EQ.2) GO TO 96
                                                                             SHLD0487
90 CCNTINUE
                                                                             SHLD0488
```

```
WBITE (6,91) I
                                                                                 SHLD 0489
   91 FORMAT (3x,12,12x, 'SHORT', 23x, 'SHORT')
                                                                                 SHLD0490
       GC 1C 98
                                                                                SHLD0491
   92 CONTINUE
                                                                                 SHLDC492
       WRITE(6,93) I
                                                                                 SHLD0493
   93 FORMAT (3X,12,12X, 'SHORT', 24X, 'OPEN')
                                                                                 SHLD 0494
       GO TO 98
                                                                                 SHLD 0495
   94 CONTINUE
                                                                                 SHL D0496
       WBITE (6,95) I
                                                                                 SHLD 0497
   95 FCRMAT (3x, 12, 13x, 'OPEN', 23x, 'SHORT')
                                                                                 SHLD 0498
       GC TC 98
                                                                                SHLD0499
   96 CCNTINUE
                                                                                 SHLD0500
       WRITE (6,97) I
                                                                                 SHLD0501
   97 FORMAT (3x,12,13x, *OPEN*,24x, *OPEN*)
                                                                                 SHLD0502
   98 CCNTINUE
                                                                                SHLD0503
   99 CCNIINUE
                                                                                 SHLD0504
  100 CONTINUE
                                                                                 SHLD0505
       DO 101 I=1, NUPS
                                                                                 SHLD0506
       DO 101 J=1,NUPS
                                                                                SHLD0507
       YO(I,J) = -YO(I,J)
                                                                                 SHLD0508
  101 YL (I,J) = -YL (I,J)
                                                                                 SHLD0509
       DC 103 I=1, NUPS
                                                                                 SHLD 0510
       SUMC 1= ZEROC
                                                                                SHLD0511
       SUMC2=ZEROC
                                                                                 SHLD0512
       DC 102 J=1,NUPS
                                                                                 SHLD0513
       SUMC 1= SUMC 1+YO (I, J)
                                                                                 SHLD0514
  102 SUMC2=SUMC2+YL(I,J)
                                                                                SHLD0515
       Y0 (I, I) =- SUNC1
                                                                                 SHLD 0516
  103 YL (1,1) =- SUMC2
                                                                                 SHLD0517
  104 CONTINUE
                                                                                 SHLD0518
C
                                                                                 SHLDC519
                                                                                 SHLD0520
C
       READ FREQUENCY AND COMFUTE CONDUCTOR IMPEDANCES
                                                                                 SHLD0521
С
                                                                                 SHLD 0522
C
                                                                                 SHLC0523
       READ (5, 105, END=225) F
                                                                                 SHLD0524
  105 FCRMAT (E10.3)
                                                                                 SHLD0525
       OMEGA=TWO*PI*F
                                                                                 SHLD0526
       JCMEGA=XJ*OMEGA
                                                                                SHLD0527
       READ (5, 106) ZGR, ZGI
                                                                                 SHLD0528
  106 FORMAT (2 (E10.3))
                                                                                 SHLD0529
       ZG=DCMPLX (ZGR, ZGI)
                                                                                 SHLD0530
       WRITE(6,107) F,ZGR,ZGI
                                                                                 SHLD 0531
  107 FORMAT (///, 1x, 'FREQUENCY (HZ) = ', 1PE 10.3//
                                                                                SHLD0532
      11x, 'FEFERENCE CONDUCTOF IMPEDANCE = ', 1PE10.3,' +J ',
                                                                                SHLD0533
      21PE10.3, OHMS PER METER')
                                                                                 SHLD0534
       IF (NU. EQ. 0) GO TO 109
                                                                                SHLD0535
       DC 108 I=1,NU
                                                                                SHLD0536
  108 ZWW V (I) = ZWW (RWST (I), NWST (I), SIGWST (I))
                                                                                 SHLD0537
  109 CONTINUE
                                                                                 SHLD0538
       IF (NS. EQ. 0) GO TO 113
                                                                                 SHLD0539
       DC 112 I=1,NS
                                                                                SHLD0540
       ZWWHV(I) = ZWW (RWHST(I), NWH(I), SIGWHS(I))
                                                                                 SHL D0541
       ZWPLV(I) = ZWW(RPWSTL(I), NPL(I), SIGFWL(I))
                                                                                SHLD0542
       ZWPRV(I) = ZWW(RPWSTR(I), NPR(I), SIGPWR(I))
                                                                                SHLD0543
       IF(STYPE(I).EQ. 2) GO TO 110
                                                                                SHLD0544
       ZSV(I) = ZSS(RS(I), TS(I), SIGS(I))
                                                                                SHLD0545
       ZDV (I) = ZDS (RS (I) , TS (I) , SIGS (I))
                                                                                SHLD 0546
       LTV (I) =ZERO
                                                                                 3HLD0547
                                                                                SHLD0548
       SIV (I) =ZERO
       GO TO 111
                                                                                 SHLD0549
```

```
110 CONTINUE
                                                                                  SHLD0550
       ZSV(I) = ZSB(RS(I), RB(I), SIGB(I), THE(I),
                                                                                  SHLD0551
      1BELT (I), WPB(I))
                                                                                  SHLD0552
      ZCV(I) = ZDB(RS(I), RB(I), SIGB(I), THB(I),
                                                                                  SHLD0553
      1BELT (I) , WPB (I))
                                                                                  SHLD0554
      LTV (I) = LTB (RS (I) , RB (I) , THB (I) ,
                                                                                  SHLD 0555
      1BELT(I), WPB(I))
                                                                                  SHLD0556
       STV(I) = STB(RS(I), RB(I), THB(I),
                                                                                  SHLD0557
      1BELT (I), WPB (I), ERS (I))
                                                                                  SHLD0558
  111 CONTINUE
                                                                                  SHLD0559
  112 CONTINUE
                                                                                  SHLD0560
  113 CONTINUE
                                                                                  SHLD0561
       IF (NS. EQ. 0) GO TO 164
                                                                                  SHLD0562
С
                                                                                  SHLD0563
C
                                                                                  SHLD0564
¢
       CCMPUTE CHAIN PARAMETER MATRICES FOR
                                                                                  SHLD0565
С
       RIGHT PIGTALL SECTIONS
                                                                                  SHLD0566
C
                                                                                  SHLD0567
C
                                                                                  SHLD0568
      DC 114 I=1,NS
                                                                                  SHLD0569
  114 LPT (I) =LPR (I)
                                                                                  SHLDC57C
       IPR=0
                                                                                  SHLD0571
       LMAXR=ZERO
                                                                                  SHLD0572
       DO 116 I=1,TNT
                                                                                  SHLD0573
      DO 115 J=1, TNT
                                                                                  SHLD0574
  115 PHIR (I, J) = ZEROC
                                                                                  SHLD 0575
  116 PHIB (I, I) = ON EC
                                                                                  SHLD0576
  117 CONTINUE
                                                                                  SHLD0577
      DC 118 I=1,NS
                                                                                  SHLD0578
  118 IF (LPT (I) .GE.LMAXR) LMAXR=LPT (I)
                                                                                  SHLD 0579
      IF (IPR.EQ.O) LTR=LMAXR
                                                                                  SHL D0580
       IF (IMAXR. EQ. ZERO) GO TC 132
                                                                                  SHLD0591
                                                                                  SHLD 0582
       IPR=IPR+1
       LMIND=LMAXR
                                                                                  SHLD0583
       DO 119 I=1,NS
                                                                                  SHLD0584
  119 IF (LPT (I) .LE.LMINR.AND.LPT (I) .NE.ZERC) LMINR=LPT (I)
                                                                                  SHLD 0585
       DO 120 I=1,NS
                                                                                  SHLD0586
       KEY(I) = 1
                                                                                  SHLD0587
  120 IF (LPT (I) .GE.LMINR) KEY(I) = 2
                                                                                  SHLD0588
       CALL INDUCT(IND, NU, NS, NT, NUPS, NTYPE, RW, YW, ZW, RS, YS, ZS,
                                                                                  SHLD0589
      1REWE, YPR, ZPR, RWH, KEY, NKU, NNS)
                                                                                  SHLD 05 90
       DC 121 I=1,NT
                                                                                  SHLD C591
       DO 121 J=1,NT
                                                                                  SHLD0592
  121 Z(I,J) = JONEGA * IND(I,J) + 2G
                                                                                  SHLD0593
       IF (NU. EQ. 0) GO TO 123
                                                                                  SHLD 0594
       DO 122 I=1,NU
                                                                                  SHLD0595
  122 Z(I,I) = Z(I,I) + ZWWV(I)
                                                                                  SHLD 0596
  123 CONTINUE
                                                                                  SHLD 0597
       CALL IMPADD (Z, KEY, NO, NS, NT, NUPS, ZSV, ZDV, LTV, ZWPRV, ZWHV, NMU, NNS) SHLDO598
       CALL SCAP (SS, IND, NU, NS, NT, NUPS, KEY, NNU, NNS)
                                                                                  SHLDC599
       CALL ADMADD (KEY, NU, NS, NT, NUPS, RS, TS, RWH, ERS, SS, SIV, NNU, NNS)
                                                                                  SHLD0600
       DO 125 I=1,NT
                                                                                  SHL D0601
       DO 124 J=1,NT
                                                                                  SHLD0602
      T(I,J) = SS(I,J) * ONEC
                                                                                  SHLD0603
  124 TI(I,J) =ZEROC
                                                                                  SHLD0604
  125 TI (I, I) = ONEC
                                                                                  SHLD0605
       CALL LEQTIC (T, NT, NT, TI, NT, NT, O, WA, IER)
                                                                                  SHLD0606
       DO 126 I=1,NT
                                                                                  SHLD0607
       DO 126 J=1,NT
                                                                                  SHLDOSOE
                                                                                  SHLD 0609
       Y(I,J) = JOHEGA + DREAL(TI(I,J))
  126 YINV (I,J) = SS(I,J) / JONEGA
                                                                                  SHLD0610
```

```
CALL MULTC(TI,Y,Z,NT,NT,NT)
                                                                                 SHLD0611
       CALL EIGCC (TI, NT, NT, 2, GAM, T, NT, WK, IER)
                                                                                 SHL00612
       DO 128 I=1,NT
                                                                                 SHLD0613
       DC 127 J=1,NT
                                                                                 3HLD0614
                                                                                  SHLD 0615
       Z(I,J) = T(I,J)
  127 TI(I,J) =ZEROC
                                                                                 SHLD0616
  128 TI(I,I) = ONEC
                                                                                 SHLD0617
       CALI LECTIC (Z,NT,NT,TI,NT,NT,7,WA,IER)
                                                                                 SHLD0o18
       DC 129 I=1,NT
                                                                                 SHLD0619
  129 GAM (I) = CDSQRT (GAM (I) )
                                                                                 SHLD0620
       CALL PHI (PHIT, NT, TNT, LMINR, GAM, Y, YINV, T, TI, EP, EN)
                                                                                 SHLD0621
       CALL MULTC (TPHI, PHIR, PHIT, INT, INT, INT)
                                                                                 SHLD0622
      DC 130 I=1,TNT
DC 130 J=1,TNT
                                                                                 SHLD0623
                                                                                 SHLD0624
  130 PHIR(I,J) = TPHI(I,J)
                                                                                 SHLD0625
       DC 131 I=1,NS
                                                                                 SHLD0626
  131 IF (IPT (I) . NE. ZERC) LPT (I) = LPT (I) - LMINF
                                                                                 SHLD 0627
       LMAXR=ZERO
                                                                                 SHLD0628
      GC IC 117
                                                                                 SHLD0629
  132 CONTINUE
                                                                                 SHLD0630
       WRITE(6,133) IPR
                                                                                 SHLD0631
  133 FCRMAT (//10x, 'THE NUMBER OF RIGHT FIGURE SECTIONS =
                                                                                 SHLD0632
     1,12//)
                                                                                 SHLD0633
                                                                                  SHLD0634
C
                                                                                 SHLD0635
C
       COMPUTE CHAIN PARAMETER MATRICES FOR
                                                                                  SHLD 0636
C
       LEFT PIGTAIL SECTIONS
                                                                                 SHLD0637
С
                                                                                 SHLD0638
C
                                                                                 SHLD 0639
       DO 134 I=1,NS
                                                                                 SHLDC640
  134 LFT(I) = LPL(I)
                                                                                 SHLD0641
      IPL=0
                                                                                  SHLD0642
       LMAXL=ZERO
                                                                                 SHLD0643
                                                                                 SHLD0644
       DC 136 I=1, TNT
      DC 135 J=1,TNT
                                                                                 SHLD0645
  135 PHIL (I,J) =ZEROC
                                                                                 SHLD0646
  136 PHIL (I, I) = ONEC
                                                                                 SHLD0647
  137 CCNTINUE
                                                                                  SHLD0648
       DO 138 I=1,NS
                                                                                 SHLD0649
  138 IF (LPT (I) .GE.LMAXL) LMAXL=LPT (I)
                                                                                  SHLD0650
       IF (IFL.EQ.O) LTL=LMAXL
                                                                                  SHLD 0651
       IF (LMAXL. EQ. ZERO) GO TO 152
                                                                                  SHLD0652
                                                                                 SHLD0653
       IPL=IPL+1
       IMINI=IMAXL
                                                                                  SHLD 0654
       DC 139 I=1,NS
                                                                                 SHLD0655
  139 IP (IPT (I) . LE.LMINL. AND. LPT (I) . NE. ZERC) IMINL=IPT (I)
                                                                                 SHLD0o56
       DC 140 I=1,NS
                                                                                 SHLD0657
       KEY(I) = 1
                                                                                 SHLD0658
  140 IF (IPT (I) . GE. LHINL) KEY (I) = 2
                                                                                 SHLD0659
       CALI INDUCT (IND, NU, NS, NT, NUPS, NTYPE, RW, YW, ZW, RS, YS, ZS,
                                                                                  SHLD0660
      1RPWL, YPL, ZPL, RWH, KEY, NNU, NNS)
                                                                                 SHLD0661
      DC 141 I=1,NT
                                                                                  SHLD0662
       DC 141 J=1,NI
                                                                                  SHLD 0663
  141 Z(I,J) = JOMEGA*IND(I,J) + ZG
                                                                                  SHLD0664
       IF (NU. EQ. 0) GO TO 143
                                                                                  SHLD0665
       DC 142 I=1,NU
                                                                                  SHLD0666
  142 \ Z(I,I) = Z(I,I) + ZWWV(I)
                                                                                  SHLD0667
  143 CONTINUE
                                                                                  SHLD0668
       CALL IMFADD (2, REY, NU, NS, NT, NUPS, 2SV, 2DV, LTV, ZWPLV, ZWHV, NNU, NNS)
                                                                                 SHLD0669
       CALL SCAP (SS, IND, NU, NS, NT, NUPS, KEY, NNU, NNS)
                                                                                  SHLD067C
       CALI ADMADD (KEY, NU, NS, NT, NUPS, RS, TS, RWH, ERS, SS, STV, NNU, NNS)
                                                                                  SHLD0671
```

```
DC 145 I=1,NT
                                                                                 SHLD0672
       DO 144 J=1,NT
                                                                                  SHLD 0673
                                                                                 SHLD0674
      T(I,J) = SS(I,J) *ONEC
  144 TI(I,J) = ZEROC
                                                                                 SHLD0675
                                                                                  SHLDC676
  145 TI(I,I) = ONEC
       CALL LEQTIC(T,NT,NT,TI,NT,NT,O,WA,IER)
                                                                                 SHLD0677
       DC 146 I=1,NT
                                                                                 SHLD0678
       DO 146 J=1,NT
                                                                                 SHLD 0679
                                                                                 SHLD0680
       Y(I,J) = JOMEGA*DREAL(TI(I,J))
  146 YINV (I,J) = SS(I,J) / JCMEGA
                                                                                 SHLD0681
       CALL MULTC (TI,Y,Z,NT,NT,NT)
                                                                                 SHLD0682
      CALL EIGCC (TI, NT, NT, 2, GAM, T, NT, WK, IEB)
                                                                                 SHLD0683
       DC 148 I=1,NT
                                                                                 SHLD0684
      DC 147 J=1,NT
                                                                                  SHLD0685
      Z(I,J) = T(I,J)
                                                                                 SHLD0686
  147 TI (I,J) = ZEROC
                                                                                 SHLD0687
  148 TI (I, I) = ONEC
                                                                                 SHLDC688
                                                                                 SHLD0689
      CALL LEQTIC(Z,NT,NT,II,NI,NI,O,WA,IER)
      DC 149 I=1,NT
                                                                                 SHLD0690
  149 GAM (I) = CDSQRT (GAM (I) )
                                                                                 SHLDC691
      CALL PHI(PHIT, NT, TNT, LMINL, GAM, Y, YINV, T, TI, EP, EN)
                                                                                 SHLD0692
      CALL MOLTC (TPHI, PHIT, PHIL, TNT, TNT, TNT)
                                                                                 SHLD0693
       DO 150 I=1, TNT
                                                                                 SHLDC694
       DC 150 J=1,TNT
                                                                                 SHLD0695
  150 PHIL (I, J) = TPHI (I, J)
                                                                                  SHLD 06 96
       DO 151 I=1,NS
                                                                                 SHLDC697
  151 IF (LPT (I) .NE.ZERO) LPT (I) = LPT (I) - LMINL
                                                                                 SHLD0698
                                                                                 SHLD0699
       I MAXI=ZERC
       GO TO 137
                                                                                 SHLD0700
  152 CONTINUE
                                                                                  SHLD0701
       WRITE (6,153) IPL
                                                                                  SHLD0702
  153 FORMAT (//10x, THE NUMBER OF LEFT PIGTAIL SECTIONS = .
                                                                                 SHLD0703
                                                                                 SHLD0704
     1. 12//)
C
                                                                                 SHLD0705
C
                                                                                  SHLD0706
C
       COMPUTE CHAIN PARAMETER MATRIX FOR
                                                                                 SHLD0707
C
       SHIFLDED SECTION
                                                                                 SHLD0708
C
                                                                                  SHLD 07 09
C
                                                                                 SHLD0710
       ISHID=I-LTL-LTR
                                                                                 SHLD0711
       IF (LSHLD.LE.ZERO) GO TO 222
                                                                                 SHLD0712
       DC 154 I=1,NS
                                                                                 SHLD0713
  154 KEY (I) =1
                                                                                 SHLD0714
       CALL INDUCT (IND, NU, NS, NT, NUPS, NTYPE, RW, YW, ZW, RS, YS, ZS,
                                                                                  SHLD 0715
      1RPWR, YPR, ZPR, RWH, KEY, NNU, NNS)
                                                                                 SHLD0716
       DC 155 I=1,NT
                                                                                  SHLD 0717
       DO 155 J=1,NT
                                                                                  SHLD0718
  155 Z(I,J) = JONEGA * IND(I,J) + ZG
                                                                                  SHLD0719
       IF (NU. EQ. 0) GC TO 157
                                                                                 SHLD0720
       DO 156 I=1,NU
                                                                                  SHLD0721
  156 Z(I,I) = Z(I,I) + ZWWV(I)
                                                                                  SHLD0722
  157 CONTINUE
                                                                                  SHLD0723
       CALL IMPADD (Z, KEY, NU, NS, NT, NUPS, 25 V, ZDV, LTV, ZWPLV, ZWWHV, NNU, NNS)
                                                                                 SHLD 0724
       CALL SCAP (SS, IND, NU, NS, NT, NUPS, KEY, NNU, NNS)
                                                                                 SHLD0725
       CALL ADMADD (KEY, NU, NS, NT, NUPS, RS, TS, BWH, ERS, SS, STV, NNU, NNS)
                                                                                 SHLD0726
       DO 159 I=1,NT
                                                                                  SHLD0727
       DC 158 J=1,NT
                                                                                 SHLD0728
                                                                                 SHLD0729
       T(I,J) = SS(I,J) *ONEC
  158 TI (I,J) = ZEROC
                                                                                  SHLD0730
  159 TI(I,I) = ONEC
                                                                                 SHLD0731
       CALL LECTIC (T. NT. NT. TI. NT. NT. O, WA, IER)
                                                                                 SHLD0732
```

```
DO 160 I=1,NT
                                                                                  SHLDC733
      DC 160 J=1,NT
                                                                                  SHLD0734
      Y(I,J) = JCMEGA * DREAL (TI(I,J))
                                                                                  SHLD0735
  160 YINV (I,J) = SS(I,J)/JCMEGA
                                                                                  SHLDC736
      CALL MULTC(TI,Y,Z,NT,N1,NT)
                                                                                  SHLD0737
      CALL EIGCC (TI, NT, NT, 2, GAM, T, NT, WK, IER)
                                                                                  SHLD0738
      DC 162 I=1,NT
                                                                                  SHLD 0739
      DC 161 J=1,NT
                                                                                  SHLD0740
                                                                                  SHLD0741
      Z(I,J) = T(I,J)
  161 T1 (I,J) = ZEROC
                                                                                  SHLD0742
                                                                                  SHLD0743
  162 TI(I,I) = ONEC
      CALL LEGTIC (Z, NT, NT, TI, NT, NT, O, WA, IER)
                                                                                  SHLD0744
      DC 163 I=1,NT
                                                                                  SHLD 0745
  163 GAM (I) = CDSQRT (GAM (I) )
                                                                                  SHLD0746
      CALL PHI (TPHI, NT, TNT, LSHLD, GAM, Y, YINV, T, TI, EP, EN)
                                                                                  SHLC0747
      CALL MULTC (PHIT, TPHI, PHII, TNT, TNT, TNT)
                                                                                  SHLD0748
                                                                                  SHLD0749
      CALL MULTC(TPHI, PHIR, PHIT, INT, INT, INT)
                                                                                  SHLC0750
                                                                                  SHLD0751
                                                                                  SHLD0752
C
Ċ
      CCMFUTE CHAIN PARAMETER MATRICES FOR
                                                                                  SHLD0753
C
C
       LINE HAVING NO SHIELDED WIRES
                                                                                  SHLD 0754
                                                                                  SHLD0755
                                                                                  SHLD0756
  164 CCNTINUE
                                                                                  SHLD 0757
       CALL INDUCT(IND, NU, NS, NT, NUPS, NTYPE, RW, YW, ZW, RS, YS, ZS,
                                                                                  SHLD0758
      1REWF, YEB, ZPR, RWH, KEY, KAU, NNS)
                                                                                  SHLD0759
                                                                                  SHLDC760
      DO 165 I=1,NT
       DC 165 J=1,NT
                                                                                  SHLD0761
  165 Z(I,J) = JOMEGA*IND(I,J)*ZG
                                                                                  SHLD0762
      DO 166 I=1,NU
                                                                                  SHLD0763
  166 Z (I, I) = Z (I, I) + ZWWV (I)
                                                                                  SHLD0764
       CALL SCAP (SS, IND, NU, NS, NT, NUPS, KEY, NNU, NNS)
                                                                                  SHLD0765
                                                                                  SHLD0766
       DO 168 I=1,NT
       DC 167 J=1,NT
                                                                                  SHLD0767
       T(I,J) = SS(I,J) *ONE
                                                                                  SHL00768
  167 TI (I,J) = ZEROC
                                                                                  SHLD0769
                                                                                  SHLD077C
  168 TI(I,I) = ONEC
       CALL LEGTIC (T, NT, NT, NI, NT, NI, O, WA, IER)
                                                                                  SHLD0771
                                                                                  SHLD0772
       DC 169 I=1,NT
       DC 169 J=1,NT
                                                                                  SHLD0773
                                                                                  SHLD0774
       Y(I,J) = JCMEGA + DREAL (TI(I,J))
  169 YINV (I,J) = SS(I,J) / JCMEGA
                                                                                  SHLD0775
       CALL MULTC(TI,Y,Z,NT,NT,NT)
                                                                                  SHLD0776
       CALL EIGCC(TI, NT, NT, 2, GAM, T, NT, WK, IFR)
                                                                                  SHLD0777
                                                                                  SHLDC778
       DC 171 I=1,NT
       DO 170 J=1,NT
                                                                                  SHLD0779
       Z(I,J) = T(I,J)
                                                                                  SHLD0780
  170 TI (I, J) = ZEROC
                                                                                  SHLD0781
  171 TI(I,I) = ONEC
                                                                                  SHLD0782
                                                                                  SHLD0783
       CALL LEGTIC (Z, NT, NT, TI, NT, NT, O, WA, IER)
       DC 172 I=1,NT
                                                                                  SHLD0784
                                                                                  SHLD0785
  172 GAM (I) = CDSQRT (GAM (I))
       CALL PHI (TPHI, NT, TNT, L, GAM, Y, YINV, T, TI, EP, EN)
                                                                                  SHLD0786
                                                                                  SHLD C787
  173 CCNTINUE
C
                                                                                  SHLD0788
C
                                                                                  SHLD0789
                                                                                  SHLDC790
C
       REABRANGE PHI MATRIX
С
                                                                                  SHLDC791
                                                                                  SHLD0792
C
```

C

REARRANGE ROWS

SHLDO793

```
SHLD0794
                                                                                   SHL00795
       IF(NU.EQ.0) GO TO 175
                                                                                   SILD 0796
       DC 174 I=1,NU
                                                                                   SHLD C797
       DO 174 J=1,TNT
                                                                                   SHLD0798
       PHI1 (I,J) =TPHI (I,J)
                                                                                   SHLDC799
  174 PHIT (I+NUPS,J) = TPHI(I+NT,J)
                                                                                   SHLD0800
  175 CONTINUE
                                                                                   SHLD0801
       IF(NS.EC.0) GO TO 182
                                                                                   SHLD0802
       DC 176 I=1, NS
DO 176 J=1, TNT
                                                                                   SHLD0803
                                                                                   SHLD0304
       PHIT (I+NU, J) = TPHI (I+NUPS, J)
                                                                                   SHLD0805
  176 PHIT (I+NUPS+NU, J) = TPHI (I+NT+NUPS, J)
                                                                                   SHLD0806
       K = 0
                                                                                   SHLD0807
       M=0
                                                                                   SHLD0808
       DC 181 I=1,NS
                                                                                   SHLD0809
       IF (IGNDR (I) . EQ. 1) GO TC 178
                                                                                   SHLD0310
       K = K + 1
                                                                                   SHLD 0811
       DC 177 J=1, TNT
                                                                                   SHLD0812
       PHIT (K+TNUPS, J) = TPHI (I+NU, J)
                                                                                   SHLD0813
  177 PHIT (K+TNUPS+NS+NISR, J) = TPHI (I+TNUPS, J)
                                                                                   SHLD 0814
       GC TO 180
                                                                                   SHLD0815
  178 CCNTINUE
                                                                                   SHLD0816
       M = M + 1
                                                                                   SHLD 0817
       DC 179 J=1, TNT
                                                                                   SHLD0818
       PHI1 (M+TNUPS+NVSR, J) =TFHI (I+TNUPS, J)
                                                                                   SHLD0319
  179 PHIT (M+TNUPS+NS, J) = TPHI (I+NU, J)
                                                                                   SHLD0820
  180 CONTINUE
                                                                                   SHLD0821
  181 CONTINUE
                                                                                   SHLD0822
  182 CONTINUE
                                                                                   SHLD0823
       DC 183 I=1, TNT
DC 183 J=1, TNT
                                                                                   SHLD0824
                                                                                   SHLD0825
  183 TPHI (I,J) = PHIT(I,J)
                                                                                   SHLD0826
                                                                                   SHLD0827
C
                                                                                   SHLD0828
C
       REARBANGE COLUMNS
                                                                                   SHLD0829
C
                                                                                   SHLD0830
C
                                                                                   SHLD0331
       IF (NU. FQ. 0) GO TO 185
                                                                                   SHLD0832
       DO 184 J=1,NU
                                                                                   SHLD0833
       DC 184 I=1,TNT
                                                                                   SHLDOB34
       PHIT (I,J) = TPHI(I,J)
                                                                                   SHLD 0835
  184 PHII(I,J+NUPS) = IPHI(I,J+NT)
                                                                                   SHLD0836
  185 CCNTINUE
                                                                                   SHLD0837
       IF (NS. EQ. 0) GO TO 192
                                                                                   SHLD0338
       DC 186 J=1,NS
                                                                                   SHLD0339
       DO 186 I=1,TNT
                                                                                   SHLD0340
       PHIT (I, J+NU) = TPHI (I, J+NUPS)
                                                                                   SHLD 0841
  186 PHIT (I, J+NUPS+NU) = TPHI (I, J+NT+NUPS)
                                                                                   SHLD0842
       K = 0
                                                                                   SHLD0843
       M = 0
                                                                                   SHLD0844
       DC 191 J=1,NS
                                                                                   SHLD0345
       IF (IGNDL (J) . EQ. 1) GO TC 188
                                                                                   SHLD0346
       K = K + 1
                                                                                   SHLDC847
       DC 187 I=1, TNT
                                                                                   SHLD0948
       PHIT (I, K+TNUPS) = TPHI (I, J+NO)
                                                                                   SHLD0849
  187 PHIT (I, K+TNUPS+NS+NISL) = TPHI (I, J+TNUPS)
                                                                                   SHLDC450
       GC TO 190
                                                                                   SHLD0851
  188 CCNTINUE
                                                                                   SHLD0852
                                                                                   SHLD0853
       M = M + 1
       DC 169 I=1, TNT
```

SHLD0854

```
PHIT (I, M+TNUPS+NVSL) =TPHI(I, J+INUPS)
                                                                               SHLD0855
  189 PHIT (I, M+TNUPS+NS) = TPHI (I, J+NU)
                                                                               SHLDC856
  190 CCNTINUE
                                                                               SHLDC857
  191 CONTINUE
                                                                               SHLD0358
  192 CCNTINUE
                                                                               SHLD 0859
                                                                               SHLD0360
                                                                               SHLD0361
C
       INCOFPORATE TERMINAL CONDITIONS
                                                                               SHLD0862
C
                                                                               SHLDC863
                                                                               SHLD0864
      DC 194 I=1, NUPS
                                                                               SHLD0865
      DC 194 J=1,NUPS
                                                                               SHLD0866
      SUMC=ZEBOC
                                                                               SHLD0867
      SUMC 1= ZEROC
                                                                               SHLD0868
      SUMC 2= ZEROC
                                                                               SHLD0869
      DC 193 K=1, NUPS
                                                                               SHLD0870
       SUMC=SUMC+PHIT (I,K+NUPS) *YO (K,J)
                                                                               SHLD 0871
      SUMC 1=SUMC1+PHIT(I+NUPS,K+NUPS) *YC(K,J)
                                                                               SHLDC372
  193 SUMC 2=SUMC 2+ YL (I, K) *PHIT (K, J+NUPS)
                                                                               SHLD0973
      B(I,J) = -SUMC + PHIT(I,J)
                                                                               SHLDC374
       C(I,J) = SUMC 1-PHIT(I+NUPS,J)
                                                                               SHLD0875
  194 D(I,J) =-SUMC2+PHIT(I+NUPS,J+NUPS)
                                                                               SHLD0876
       IF (NS. EC. 0) GO TO 199
                                                                               SHLD0377
                                                                               SHLDC978
       DO 196 I=1, NUPS
       DC 196 J=1,NS
                                                                               SHLD0379
       SUMC=ZEROC
                                                                               SHLD0880
       DC 195 K=1, NUPS
                                                                               SHLD0881
  195 SUMC=SUMC+YL(I,K) *PHIT(K,J+INUPS)
                                                                               SHLD0882
  196 A (I, J+NUPS) = SUMC-PHIT (I+NUPS, J+TNUPS)
                                                                               SHLD0383
       DO 198 I=1,NS
                                                                               SHLD0384
       DO 198 J=1, NUPS
                                                                               SHLD0885
       SUMC = ZEROC
                                                                               SHLD0386
                                                                               SHLD0887
       DO 197 K=1, NUPS
  197 SUMC=SUMC+PHIT(I+TNUPS+NS,K+NUFS) *YO(K,J)
                                                                               SHLD0388
  198 A (I + NUPS, J) = SUMC-PHIT (I+TNUPS+NS, J)
                                                                               SHLD 0889
  199 CONTINUE
                                                                               SHLDC890
                                                                                SHLD0891
       DC 202 I=1, NUPS
       SUMC = ZEROC
                                                                               SHLDC892
       DO 201 J=1, NUPS
                                                                                SHLD0893
       SUMC 1= ZEROC
                                                                               SHLD0894
       DO 200 K=1, NUPS
                                                                                SHLD 0895
  200 SUMC 1= SUMC 1+YL (I,K) *B (K,J)
                                                                               SHLDC896
                                                                               SHLDC897
       A(I,J) = C(I,J) + SUMC1
  201 SUMC=SUMC+D(I,J) *IO(J)
                                                                                SHLD0898
                                                                                SHLDC899
  202 EP(I) = IL(I) + SUMC
       IF (NS. EQ. 0) GO TO 206
                                                                                SHLD0900
                                                                                SHLD0301
       DC 203 I=1,NS
       DO 203 J=1,NS
                                                                                SHLDC902
  203 A (I+NUPS, J+NUPS) =-PHIT (I+TNUPS+NS, J+TNUPS)
                                                                               SHLD0903
       DO 205 I=1,NS
                                                                                SHLD0904
                                                                               SHLDC905
       SUMC=ZEROC
       DC 204 J=1,NUPS
                                                                                SHLD0906
  204 SUMC=SUMC+PHIT(I+TNUPS+NS,J+NUPS)*I0(J)
                                                                                SHLD0907
  205 EP(I+NUPS) = SUMC
                                                                               SHLDC908
                                                                                SHLD0909
  206 CONTINUE
       CALL LECTIC (A, NT, NT, RP, 1, NT, 0, WA, IER)
                                                                                SHLD0310
       DO 208 I=1, NUPS
                                                                                SHLD0911
                                                                                SHLD0312
       SUMC=ZEROC
                                                                                SHLD0913
       SUNC 1= ZEROC
       DO 207 J=1,NUPS
                                                                                SHLD0914
                                                                                SHLD0915
```

SUMC=SUMC+B(I,J) *EP(J)

```
207 SUMC1=SUMC1+PHIT (1, J+NUES) #10 (J)
                                                                            SHLD0316
208 EN(I) = SUMC+SUMC1
                                                                            SHLDC317
                                                                            SHLD0318
    IF(NS.EQ.0) GO TO 211
    DC 210 I=1, NUPS
                                                                             SHLD0919
                                                                            SHLD 0920
    SUMC=ZEROC
    DC 209 J=1,NS
                                                                            SHLD0921
209 SUMC=SUMC+PHIT(I,J+TNUES) *EP(J+NUES)
                                                                            SHLD0922
210 EN (I) = EN (I) + SUMC
                                                                             SHLDC923
211 CONTINUE
                                                                            SHLD0924
    IF (NU. EQ. 0) GC TO 215
                                                                            SHLD0925
    WRITE(6,212)
                                                                            SHLDC926
212 FORMAT (////, 1X, "WIRE", 14X, "VOM (VCLTS)", 15X, "VOA (DEGREES)",
                                                                            SHLD0927
   128X, 'VIM (VOLTS) ', 15X, 'VLA (DEGREES) '//)
                                                                            SHLD0928
    DO 214 I=1,NU
                                                                             SHLDC929
    VWL=FP(I)
                                                                            SHLD0930
    VWLE=CDABS (VWL)
                                                                             SHLD0331
    VWLR=DREAL (VWL)
                                                                             SHLD0932
    VWLI=DIMAG(VWL)
                                                                            SHLD0933
    VWLA=DATAN2 (VWLI, VWLR) *RADEG
                                                                             SHLD0934
    VWR = EN (I)
                                                                             SHL00935
    VWRM=CDABS(VWR)
                                                                            SHLD0936
    VWRR=DREAL (VWR)
                                                                             SHLD0937
                                                                             SHL70938
    VWRI=DIMAG (VWR)
                                                                            SHLD0939
    VWRA=DATAN2(VWRI,VWRR) *RADEG
    WRITE (6,213) I, VWLM, VWLA, VWRM, VWRA
                                                                            SHLD0940
213 FORMAT (1x,12,2(15x, 1PE 10.3), 15x,2(15x, 1PE 10.3))
                                                                             SHLD 0941
214 CCNTINUE
                                                                            SHLD0942
215 CCNTINUE
                                                                             SHLD0943
    IF(NS.EQ.0) GO TO 219
                                                                            SHLD0944
    WRITE(6, 216)
                                                                             SHLD0945
216 PORMAT (///,1X, SHIELDED WIRE ,5X, VOM (VOLTS) , 15X, VOA (DEGREES) , SHLD0946
   128x, 'VLM (VOLTS) ', 15x, 'VLA (DEGREES) '//)
                                                                             SHLDC947
    DC 218 I=1,NS
                                                                             SHLD0948
    VSWI = EP (I+NU)
                                                                             SHLD0949
    VSWLM=CDABS (VSWL)
                                                                             SHLDC95C
    VSWIR=DREAL (VSWL)
                                                                             SHLD0951
    VSWII=DIMAG (VSWL)
                                                                             SHLD0952
    VSWLA=DATAN2 (VSWLI, VSWIR) *RADEG
                                                                             SHLD0953
    VSWR=EN(I+NU)
                                                                             SHLD0954
    VSWRM=CDABS (VSWR)
                                                                             SHLD0955
    VSWRR=DREAL (VSWR)
                                                                             SHLD C956
    VSWBI=CIMAG(VSWR)
                                                                            SHLD0957
    VSWRA=CATAN2 (VSWRI, VSWRR) *RADEG
                                                                             SHLD0956
    WRITE (6,217) I, VSWLM, VSWLA, VSWRM, VSWRA
                                                                            SHLDC959
217 FCRNAT (1X, 12, 2 (15X, 1PE 10.3), 15X, 2 (15X, 1PE 10.3))
                                                                            SHLD0960
218 CCNTINUE
                                                                            SHLD0961
219 CONTINUE
                                                                             SHLD0962
    GC TC 104
                                                                            SHLD0963
220 CCNTINUE
                                                                             SHLD0964
    WRITE (6, 221)
                                                                             SHLDC965
221 PORMAT (20x, INPUT DATA ERROR /
   120x, *CCNSULT USERS MANUAL FOR ALLOWED RANGE OF FORMAT*)
                                                                            SHLD0967
    GO TO 224
                                                                             SHLDC968
222 CONTINUE
                                                                            SHLD0969
    WRITE (6,223)
223 FORMAT (10X, THERE IS A ZERO OR NEGATIVE LENGTH SHIELD ON A SHIELDESHLD0971
   1D WIRE*/10X, 'CHECK PIGTAIL LENGTHS AGAINST TOTAL LINE LENGTH')
                                                                            SHLD0972
224 CCNTINUE
                                                                            SHLD0973
225 STOP
                                                                             SHLD 0974
                                                                            SHLD0975
    FND
```

FLS 10001

С

```
PLS10002
C
      PUNCTION LS1 FOR COMPUTING THE SELF INDUCTANCES OF CONDUCTORS
                                                                                FLS 10003
С
      ABOVE GROUND
                                                                                FLS 10004
                                                                                FLS10005
C
C
                                                                                FLS 10006
      RPAI FUNCTION LS1*8 (RW, H)
                                                                                FLS10007
      IMPLICIT REAL+8 (A-H,O-Z)
                                                                                FLS 10008
      REAL *8 MU, MUO2PI, MUO4PI
                                                                                FLS 10009
      COMMON /ROOM/ ZERO, ONE, TWC, THREE, FOUR, MU, MUO2PI, MUO4PI,
                                                                                FLS10010
      1PI, RADEG, ERTE, SIGCOP, R, F, V2
                                                                                FLS 10011
      LS1=MUO2PI*DLCG(TWO*H/RW)
                                                                                FLS 10012
       RETURN
                                                                                FLS 10013
      END
                                                                                FLS 10014
С
                                                                                FLM 10001
C
                                                                                FLM 10002
C
      PUNCTION LHI FOR COMPUTING MUTUAL INDUCTANCES OF CONDUCTORS
                                                                                FLM 10003
C
       ABOVE GROUND
                                                                                PLM 10004
С
                                                                                FLM10005
C
                                                                                FLM 10006
      REAL PUNCTION LM1*8 (YI,YJ,ZI,ZJ)
                                                                                FLM 10007
       IMPLICIT REAL+8 (A-H,O-Z)
                                                                                FLM10008
      REAL+8 MU, MUO2PI, MUO4PI
                                                                                FLM 100.09
      CCHMCN /RCON/ ZERO, ONE, TWC, THREE, FOUR, MU, MUO2PI, MUO4PI,
                                                                                FLM 100 10
      1PI, RADEG, ERTE, SIGCOP, R, F, V2
                                                                                FL410011
      ZC = 2I - 2J
                                                                                FLM 100 12
       YD=YI-YJ
                                                                                PLM 100 13
      DIJ 2 = Z C * Z D * Y D * Y D
                                                                                PLM10014
       L#1=MUO4PI*DLCG(ONE+FOUR*YI*YJ/DIJ2)
                                                                                FLM 100 15
       RETURN
                                                                                FLM 100 16
                                                                                FLM10017
C
                                                                                FLS 20001
C
                                                                                FLS20002
C
      PUNCTION LS2 FOR COMPUTING THE SELP INDUCTANCES OF CONDUCTORS
                                                                                FLS 20003
C
      IN AN CVERALL SHIELD
                                                                                FLS 20004
C
                                                                                FLS20005
С
                                                                                FLS 20006
      REAL FUNCTION LS2 +8 (RWI, RI)
                                                                                PLS 20007
      IMPLICIT REAL+8 (A-H,O-Z)
                                                                                FLS20008
      REAL+8 MU, MUO2PI, MUO4PI
                                                                                FLS 20009
      COMMON / RCON/ ZERO, ONE, TWC, THREE, FCUB, MU, MUO2PI, MUO4PI,
                                                                                PLS 200 10
      1PI, RADEG, ERTE, SIGCOP, R.F. V2
                                                                                PLS20011
       LS2=MUO2PI*DLOG((R*R-RI*RI)/(R*RWI))
                                                                                FLS 20012
       RETURN
                                                                                FLS 200 13
       END
                                                                                FLS20014
                                                                                FLM20001
C
С
                                                                                PLM20002
c
c
       FUNCTION LM2 FOR COMPUTING THE MUTUAL INDUCTANCES OF CONDUCTORS
                                                                                FLM20003
       IN AN OVERALL SHIELD
                                                                                FLM20004
C
                                                                                FLM20005
C
                                                                                PLM2C006
      REAL FUNCTION LM2*8(RI,RJ,THI,THJ)
                                                                                FLM20007
       IMPLICIT REAL+8 (A-H,O-Z)
                                                                                FLM20008
      REAL+8 MU, MUO2PI, MUO4PI
                                                                                FL420009
      CCNNCN /RCON/ ZERO, ONE, TWO, THREE, FCUE, MU, MUO2PI, MUC4PI,
                                                                                FLM 200 10
      1PI, BADEG, ERTE, SIGCOP, R, F, V2
                                                                                FL420011
       RI2=RI*RI
                                                                                FLM20012
       PJ2=BJ*BJ
                                                                                FLM 20013
      THETA=THI-THJ
                                                                                FL#20014
                                                                                PL420015
       RS2=R*R
      LM2=MUO4PI+DLOG((RJ2/RS2)+(RI2+RJ2+RS2+RS2-TWC+RI+RJ+RS2+
                                                                                FLM 200 16
      1DCOS (THETA) ) / (RI2+RJ2+BJ2+RJ2-TWO+RI+RJ+RJ2+DCOS (THETA) ) )
                                                                                FL420017
```

```
RETURN
                                                                         PL42C018
 END
                                                                         PLM20019
                                                                         FSTE0001
                                                                         FSTB0002
 FUNCTION STB FOR COMPUTING THE TRANSFER ELASTANCES FOR
                                                                         FSTB0003
  BRAIDED SHIELDS
                                                                         FSTB0004
                                                                         FSTB0005
                                                                         FSTB0006
 REAL PUNCTION STB*8(ES, RE, THW, E, WPB, ERS)
                                                                         FSTB0007
 IMPLICIT REAL+8 (A-H, 0-Z)
                                                                         FSTB0008
 INTEGER P.WPB
                                                                         FSTB0009
 REAL *4 TABLH (5, 9)
                                                                         FSTB0010
 REAL*8 MU, MUO2PI, MUO4PI
                                                                         FSTB0011
 CCMMCN /RCON/ ZERO, ONE, TWO, THREE, FOUR, NU, MUO2FI, MUO4PI,
                                                                         FSTE0012
 1PI, PADEG, ERTE, SIGCOP, R.F. V2
                                                                         FSTB0013
 DATA TABLE/.521, 1.036, 1.545, 2.049, 2.547, .502, 1.001, 1.496,
                                                                         FSTB0014
 11.987, 2.475, .491, .987, 1.463, 1.944, 2.423, .480, .956, 1.431,
                                                                         FSTB0015
 21.902, 2.371, 471, 939, 1.404, 1.866, 2.326, 463, 922, 1.379,
                                                                         FSTB0016
 31.834,2.285,.458,.912,1.364,1.813,2.259,.455,.906,1.355,
                                                                         PSTB0017
 41.801, 2.244, .454, .904, 1.352, 1.796, 2.238/
                                                                         FSTB0018
 THW=THW*RADEG
                                                                         FSTB0019
  XF=FLOAT(B) *FLOAT(WPB) *TWO*RB/(FOUR*FI*RS*DCOS(THW/RADEG))
                                                                         FSTB0020
 CFC=TWC+XF-XF+XF
                                                                         FSTB0021
  FAC = ((CNE-OPC) ** (THREE/TWO)) *TWC*ERS/(ERS+ONE)
                                                                         FSTB0022
 DX = 1.0D-2
                                                                         FSTB0023
 DY=5.000
                                                                         FSTB0024
  IF (FAC. LE.DX) GO TO 2
                                                                         FSTB0025
  IF(FAC.GE.5.0D-2) GO TO 3
                                                                         FSTB0026
  DC 1 I = 1,5
                                                                         FSTB0027
 FAC 1=DX*FLOAT (I)
                                                                         PSTB0028
  X=FAC-FAC1
                                                                         PSTB0029
  IF (X.GE.ZERO) GO TO 1
                                                                         FSTB0030
  IX1=I-1
                                                                         PSTB0031
  I X 2 = I
                                                                         FSTB0032
  DIFX=FAC-DX*PLOAT(IX1)
                                                                          FSTB0033
  GC IC 4
                                                                         PSTB0034
1 CONTINUE
                                                                          FSTB0035
                                                                          FSTB0036
2 IX1=1
  I X2 = 2
                                                                         FSTB0037
  DIFX=ZFRO
                                                                         FSTB0038
  GC IC 4
                                                                          FSTB0039
3 IX1=4
                                                                         FSTB0040
  IX2=5
                                                                          FSTB0041
  DIPX=DX
                                                                         FSTB0042
4 CCNTINUE
                                                                         FSTB0043
  IF (THW.LE.DY) GO TO 6
                                                                         FSTB0044
  IF (THW.GE. 45.0DO) GO TC 7
                                                                          FSTB0045
  DC 5 J=1,9
                                                                         FSTB0046
  PSI1=DY*FLOAT(J)
                                                                          FSTBC047
  Y=THW-PSI1
                                                                         FSTB0048
  IP (Y.GE.ZERO) GC TO 5
                                                                          FSTB0049
  JY1=J-1
                                                                          FSTBC050
                                                                         FSTE0051
  JY2=J
  DIFY=THW-DY*FLOAT (JY1)
                                                                         FSTB0052
  GC 10 8
                                                                          FSTBC053
5 CCNTINUE
                                                                          FSTB0054
                                                                         FSTB0055
6 JY1=1
  JY2=2.
                                                                          FSTE0056
  DIFY=ZERO
                                                                         FSTB0357
  GC 10 8
                                                                          FSTB0058
                                                                          FST20059
7 JY1=8
```

```
JY2=9
                                                                       FSTB006J
 DIFY = DY
                                                                       FSTBC061
8 CCNTINUE
                                                                       FST80062
 F1=TABLH(IX1,JY1)
                                                                       FSTB0063
 F2=TABLH(IX2,JY1)
                                                                       PSTB0064
 P3=TABLH(IX1,JY2)
                                                                       FSTB0065
 P4=TABLH (IX2, JY2)
                                                                       FSTB0066
 FSTB0067
 1F3-F2+F1)
                                                                       FSTB0068
 H=H+DX
                                                                       FSTB0069
 STB=H/(TWO*FLOAT(B) *ERS*ERTE)
                                                                       FSTB0070
 THW=THW/RADEG
                                                                       FSTE0071
 RETURN
                                                                       rstB0072
 END
                                                                       FSTB0073
                                                                       PLTB0001
                                                                       FLTB0002
 FUNCTION LTB FOR COMPUTING THE TRANSFER INDUCTANCES FOR
                                                                       FLT50003
 ERAILED SHIELDS
                                                                       FLTB0004
                                                                       FLTB0005
                                                                       FLTB0006
 REAL FUNCTION LTB *8 (RS, RB, THW, B, WPB)
                                                                       FLTEOJ07
 IMPLICIT REAL+8 (A-H, 0-Z)
                                                                       FLTB0J08
 INTEGER E, WPB
                                                                       FLTB0009
 REAL+4 TABLG (5,9)
                                                                       FLT B00 10
 REAL*8 MU, MUO2PI, MUO4PI
                                                                       FLTB0J11
 CCHMCN /RCON/ ZERO, ONE TWO, THREE, FOUR, MU, MUO2PI, MUO4PI,
                                                                       FLTB0012
 1PI, BADEG, ERTE, SIGCOP, R, F, V2
                                                                       FLIB0013
 DATA TABLG/.539, 1.091, 1.657, 2.236, 2.829, .555, 1.117, 1.686,
                                                                       FLTB0014
 12.261, 2.844, .584, 1.173, 1.767, 2.366, 2.569, .621, 1.246, 1.874, 2.507,
                                                                       FLTB0015
 23.143,.667,1.337,2.010,2.687,3.368,.727,1.457,2.190,2.928,
                                                                       FLTEJ016
 33.668,.807,1.618,2.433,3.253,4.076,.910,1.825,2.745,3.671,
                                                                       FLT90017
44.603, 1.045, 2. C98, 3. 158, 4. 226, 5. 303/
                                                                       FLTB0016
                                                                       FLTB0019
  THW=THW+RADEG
 XF=FLOAT(B) *FLOAT(WPB) *TWO*RB/(FOUR*PI*RS*DCOS(THW/RADEG))
                                                                       FLTB0020
  OFC=TWO+XF-XP+XF
                                                                       FLT80021
 PAC = (CNE-OPC) ** (THREE/TWC)
                                                                       FLTB0022
  DX = 1.0D - 2
                                                                       FLTBC023
                                                                       FLTB0024
 DY=5.000
 IF(FAC.LE.DX) GO TO 2
                                                                       PLTB0025
 IF(FAC.GE.5.0D-2) GO TO 3
                                                                       FLTBC026
 DC 1 I=1,5
                                                                       FLTB0027
 FAC1=DX*FLOAT(I)
                                                                       FLTB0028
  X=FAC-FAC1
                                                                       FLTBC029
 IF (X.GE.ZERO) GO TO 1
                                                                       FLTE0030
  IX1=I-1
                                                                       FLTB0031
                                                                       FLTE0032
  T X 2 = T
 DIPX=FAC-DX*FLOAT(IX1)
                                                                       FLIB0033
                                                                       FLTB0034
 GC TC 4
1 CONTINUE
                                                                       FLTE0035
2 IX1=1
                                                                       FLT20036
  I X2=2
                                                                       FLTB0037
  DIFX=ZERO
                                                                       FLTE0038
  GC TC 4
                                                                       FLTB0039
                                                                       FLTB0040
3 IX1=4
  IX2=5
                                                                       FLTE0041
                                                                       FLTB0042
 DIFX=DX
4 CCNTINUE
                                                                       FLTB0043
  IF(THW.LE.DY) GO TO 6
                                                                       FLTB0044
 IF (THW.GE. 45.0D0) GO TC 7
                                                                       FLTB0045
                                                                       FLTB0046
  DC 5 J=1,9
  PSI 1=DY*PLOAT (J)
                                                                       FLTEC047
```

```
Y=THW-PSI1
                                                                            FLT20048
      IF (Y.GE.ZERC) GC TO 5
                                                                            FI780049
      JY1=J-1
                                                                            FLTBC05C
      JY2=J
                                                                            FLT20051
      DIFY=THW-DY*FLCAT (JY1)
                                                                            FLTB0052
      GC TO 8
                                                                            FLTEC053
    5 CCNTINUE
                                                                            FL130054
    6 JY1≈1
                                                                            FLTB0055
      JY2=2
                                                                            FLTB0056
      DIFY=ZERO
                                                                            FLTB0057
      GC IC 8
                                                                            FLTB0058
    7 JY1=8
                                                                            FLTE0059
      JY2=9
                                                                            FLTBC060
      DIFY = DY
                                                                            FLTB0061
    8 CONTINUE
                                                                            FLTE0062
      F1=TABLG (IX1,JY1)
                                                                            PLT30063
      F2=TABLG(IX2,JY1)
                                                                            FLT30064
      P3=TABLG(IX1,JY2)
                                                                            FLTE0065
      F4=TABLG (IX2,JY2)
                                                                            FLTB0066
      FLTB0067
     1F2+F1)
                                                                            FLTB0068
      XG=XG*DX
                                                                            FLTB0069
      LTB=MU *XG/(TWO*FLOAT(B))
                                                                            FLTB007C
      THW=THW/RADEG
                                                                            FLTB0071
      RETURN
                                                                            FLTB0072
                                                                            FLIBCO73
      FND
                                                                            FZWW0001
С
                                                                            FZWWC002
C
      FUNCTION ZWW FOR COMPUTING THE SEIP IMPEDANCES OF STRANDED WIRES
C
                                                                            FZWW0004
C
                                                                            FZWWC005
      COMPLEX PUNCTION ZWW * 16 (RST, NST, SIG)
                                                                            FZWW0006
      IPPLICIT REAL+8 (A-H,O-Z)
                                                                            FZWW0007
      REAL+8 MU, MUO2PI, MUO4PI, LDC
                                                                            FZWW0008
      CCMPLEX*16 ZEROC, ONEC, XJ, JOMEGA
DATA P25/.25D0/, ONEP15/1.15D0/, P5/.5C0/, P15/.15D0/
                                                                            FZWW0009
                                                                            FZWW0010
      CCMMCN /RCON/ ZERO, ONE, TWC, THREE, FOUR, MU, MUO2PI, MUO4PI,
                                                                            FZWWC011
     1PI, BADEG, ERTE, SIGCOP, R, F, V2
                                                                            FZWW0012
      COMPON /CCON/ ZEROC, ONEC, XJ, JONEGA
                                                                            FZWW0013
      DELTA=ONE/(TWO*PI*ESORT(SIG*SIGCOP*F*MUO4PI))
                                                                            FZWW0014
      RDC=ONE/(PI*SIG*SIGCOP*RST*RST)
                                                                            FZWW0015
      IDC=FUO4PI/TWC
                                                                            FZWW0016
      IF (RST.LE.DELTA) GO TO 1
                                                                            PZWWC017
      IF(BST.GE.THRFE*DELTA) GO TO 2
                                                                            FZWW0018
      ZWW = (P25* (RST/DELTA+THREE) *RDC+JOMEGA* (ONEP15-P15*RST/DELTA) *
                                                                            FZWW0019
     1LCC) / FLCAT (NST)
                                                                            FZWWC020
      GC TO 3
                                                                            F2WW0021
    1 ZWW= (RDC+JCMEGA*LDC) /FLCAT (NST)
                                                                            FZWW0022
                                                                            FZWWC023
    2 ZWW = (P5*BST*HDC/DELTA+JOMEGA*TWO*DELTA*LDC/RST) /FLOAT (NSI)
                                                                            FZ##0024
    3 CCNTINUE
                                                                            FZWW0025
      RETURN
                                                                            FZWW0026
                                                                            FZWW0027
      END
                                                                            FZDB0001
C
                                                                            FZDB0002
C
      PUNCTION ZDB FOR COMPUTING THE DIFFUSION IMPEDANCES OF BRAIDED
                                                                            FZ DB 0003
C
                                                                            FZ0B0004
      SHIEIDS
C
                                                                            F20B0005
C
                                                                            FZ 7B0006
      COMPLEX FUNCTION ZDB+16 (RS, RB, SIGE, THW, E, WPB)
                                                                            F20B0007
      IMPLICIT REAL+8 (A-H,O-Z)
                                                                            FZ DB OOOB
```

FZDS0017

SINH = (CDEXP (GAM+TS) - CDEXP (-GAM+TS))/TWO

```
ZDS=RDC*GAM*TS/SINH
                                                                               FZDS0018
      RETURN
                                                                               FZDS0019
      END
                                                                               FZDS0020
C
                                                                               FZSS0001
                                                                               FZSS0002
C
C
                                                                               F2SS0003
      PUNCTION ZSS FCR COMPUTING THE SELF IMPEDANCES OF
      SCLID SHIELDS
                                                                               FZSS0004
C
                                                                               FZSS0005
                                                                               FZSS0006
      CCMFIEX FUNCTION ZSS*16 (RS,TS,SIGS)
                                                                               FZSS0007
      IMPLICIT REAL*8 (A-H,O-Z)
                                                                               FZSS0008
      REAL*8 MU, MUO2PI, MUO4PI
                                                                               F25S0009
      CCMFIEX*16 ZERCC, ONEC, XJ, JONEGA
                                                                               FZSS0010
      COMMON /RCON/ ZERO, ONE, TWC, THREE, FOUR, MU, MUO2PI, MUO4PI,
                                                                               FZSS0011
     1PI, RADEG, ERTE, SIGCOP, R, F, V2
                                                                               FZSS0012
      COMPON /CCON/ ZEROC, ONEC, XJ, JONEGA
                                                                               FZSS0013
      DELTA=ONE/DSQRT(PI*F*MU*SIGS*SIGCOP)
                                                                               FZSSC014
      RSS=CNE/(SIGS*SIGCOP*DELTA)
                                                                               FZSS0015
      CCSH=(DEXP(TWO+TS/DELTA)+DEXP(-TWO+TS/DELTA))/TWO
                                                                               FZSS0016
      SINE=(DEXP(TWO*TS/DELTA)-DEXP(-TWO*TS/DELTA))/TWO
                                                                               FZSS0017
      RR=RSS*((SINH+DSIN(THO*TS/DELTA))/(COSH-DCOS(TWO*TS/DELTA)))/
                                                                               FZSS0018
     1 (TWC*PI* (BS-TS/TWO))
                                                                               FZSS0019
      OLI=RSS*((SINH-DSIN(TWO*TS/DELTA))/(COSH-DCOS(TWO*TS/DELTA)))/
                                                                               FZSS0020
      1(TWC*PI*(RS-TS/TWO))
                                                                               FZSS0021
      ZSS=RR+XJ*CLI
                                                                               FZSS0022
      RETURN
                                                                               FZSS0023
      END
                                                                               FZSS0024
С
                                                                               SMUL0001
C
                                                                               SMUL0002
C
       SUBROUTINE MULTO FOR MULTIPLYING TWO COMPLEX MATRICES
                                                                               SMUL0003
C
                                                                               SMUL0004
                                                                               SMUL0005
      SUBFOUTINE MULTC (A, B, C, NL, NM, NR)
                                                                               SMUL0006
      IMPLICIT REAL+8 (A-H,O-Z)
COMFLEX+16 A (NL, NR), B (NL, NM), C (NM, NB), SUMC, ZEROC, ONEC, XJ, JOMEGA
                                                                               SMUL0007
                                                                               SMUL0008
      CCHMCN /CCON/ZEROC, ONEC, XJ, JOHEGA
                                                                               SMUL0009
      DC 2 I=1,NL
                                                                               SMU L 00 10
      DC 2 J=1,NR
                                                                               SMUL0011
      SUMC=ZEROC
                                                                               SMUL0012
      DC 1 K=1, NM
                                                                               SMUL0013
    1 SUMC=SUMC+B(I,K)+C(K,J)
                                                                               SMUL0014
    2 A(I,J) = SUMC
                                                                               SMUL0015
      RETURN
                                                                               SMU L 00 16
      END
                                                                               SMUL0017
C
                                                                               SCAP0001
C
                                                                               SCAP0002
C
      SUBBOUTINE SCAP FOR COMPUTING THE INVERSE OF THE CAPACITANCE
                                                                               SCAP0003
C
      MATRIX
                                                                               SCAP0004
C
                                                                               SCAP0005
C
                                                                               SCAP0006
      SUBROUTINE SCAP (SS, IND, NU, NS, NT, NUPS, KEY, NNU, NNS)
                                                                               SCAP0007
      IMPLICIT REAL+8 (A-H, 0-Z)
                                                                               SCAP0008
      INTEGER KEY (NNS)
                                                                               SCAP0009
      REAL+8 IND(NT,NT),SS(NT,NT)
                                                                               SCAP0010
      V=2.997925D8
                                                                               SCAP0011
      V 2= V +V
                                                                               SCAP0012
      DO 1 I=1,NT
                                                                               SCAPOD13
      DC 1 J=1,NT
                                                                               SCAP0014
    1 SS(I,J) = V2 + IND(I,J)
                                                                               SCAP0015
      IF(NS. EQ. 0) GO TO 4
                                                                               SCAPOO 16
      DC 3 I=1.NS
                                                                               SCAPO017
```

```
IF (KEY (I) . EQ. 2) GO TO 2
                                                                             SCAP0018
                                                                             SCAP0019
   SS(I+NUPS,I+NUPS)=SS(I+NU,I+NU)
                                                                             SCAP0020
2 CONTINUE
3 CONTINUE
                                                                             SCAP0021
4 CONTINUE
                                                                             SCAP0022
                                                                             SCAP0023
   RETURN
                                                                             SCAP0024
                                                                             SINDOO01
                                                                             SINDOOO2
   SUBBOUTINE INDUCT FOR COMPUTING THE INDUCTANCE MATRIX
                                                                             SIND0003
                                                                             SINDOOO4
                                                                             SINDOOO5
   SUBBOUTINE INDUCT (IND, NU, NS, NT, NUPS, NTYPE, RW, YW, ZW, BS, YS, ZS,
                                                                             SINDOOO6
  1RWP, YP, ZP, RWH, KEY, NNU, NNS)
                                                                             SINDOOO7
  IMPLICIT REAL+8 (A-H,O-Z)
                                                                             SINDOOO8
   INTEGER KEY (NNS)
                                                                             SINDOOO9
                                                                             SINDO010
   REAL*8 MU, MUO2PI, MUO4PI
   REAL+8 IND(NT,NT), RW(NNU), YW(NNU), RS(NNS), YS(NNS), RWH(NNS),
                                                                             SIND0011
                                                                             SIND0012
  125 (NNS), YP (NNS), ZW (NNU), ZP (NNS), RWP (NNS), LS1, LM1, LS2, LM2
   COMMON /RCON/ ZERO, ONE, TWO, THREE, FOUR, MU, MUO2PI, MUO4PI,
                                                                             SIND0013
                                                                             SIND0014
  1PI, RADEG, ERTE, SIGCOP, R, F, V2
   GO TO (1,29), NTYPE
                                                                             SINDO015
 1 CONTINUE
                                                                             SIND0016
                                                                             SIND0017
   IF (NU. EC. 0) GO TO 3
                                                                             SIND0018
   DC 2 I=1,NU
                                                                             SIND0019
 2 IND (J, I) = LS1 (RW(I), YW(I))
                                                                             SINDO020
 3 CONTINUE
   IF (NS. EQ. 0) GO TO 8
                                                                             SIND0021
                                                                             SINDO022
   DC 7 I=1,NS
   IKEA=KEA(I)
                                                                             SINDO023
                                                                             SIND0024
   GC TC (4,5), IKEY
 4 IND (I+NU, I+NU) =LS1 (RS(I), YS(I))
                                                                             SINDO025
   GC TC 6
                                                                             SINDO026
                                                                             SINDO027
 5 IND (I+NU,I+NU)=LS1 (RWP (I),YP(I))
                                                                             SINDO028
 6 CONTINUE
                                                                             SINDOU29
   IND (I+NUPS,I+NUPS)=LS1(RWH(I),YS(I))
                                                                             SIND0030
 7 CONTINUE
                                                                             SINDO031
 8 CONTINUE
   IP (NU. EQ. 0) GO TO 10
                                                                             SINDO032
                                                                             SIND0033
   NUM 1 = NU-1
   DO 9 I=1, NUM 1
                                                                             SINDO034
                                                                             SINDO035
   IP1=I+1
   DC 9 J=IP1,NU
                                                                             SINDO036
                                                                             SINDO037
 9 IND (I, J) = LM1 (YW(I), YW(J), ZW(I), ZW(J))
10 CCNTINUE
                                                                             SINDO038
                                                                             SIND0039
   IF (NS. EQ. 0) GO TO 21
                                                                             SINDO040
   NSM 1=NS-1
                                                                             SINDO041
   DO 16 I=1,NSM1
                                                                             SIND0042
   IP1=I+1
                                                                             SINDO043
   DO 16 J=IP1, NS
   IF (KEY (I) . EQ. 1. AND. KEY (J) . EQ. 1) NK=1
                                                                             SINDO044
                                                                             SIND0045
   IF (KEY (I).EQ.1.AND.KEY (J).EQ.2) NK=2
   IF (KEY (I) . EQ. 2. AND . KEY (J) . EQ. 1) NK=3
                                                                             SINDO046
                                                                             SINDO047
   IF (KEY (I) . EQ. 2. AND. KEY (J) . EQ. 2) NK=4
                                                                             SIND0048
   GO TO (11,12,13,14), NK
                                                                             SINDO049
11 CONTINUE
   IND (I+NU,J+NU) = LM1 (YS(I),YS(J),ZS(I),ZS(J))
                                                                             SINDO050
                                                                             SIND 0051
   GO TO -15
                                                                             SINDO052
12 IND(I+NU, J+NU) = LM1(YS(I), YP(J), ZS(I), ZP(J))
   GC TC 15
                                                                             SINDO053
                                                                             SINDO054
13 IND (I+NU,J+NU)=LM1 (YP(I),YS(J),ZP(I),ZS(J))
```

```
SINDO055
   GO TO 15
14 IND (I+NU,J+NU) = LM1(YP(I),YP(J),ZP(I),ZP(J))
                                                                             SINDO056
15 CONTINUE
                                                                             SIND0057
   IND (I+NUPS, J+NUPS) = LM1 (YS(I), YS(J), ZS(I), ZS(J))
                                                                             SINDOO58
                                                                             SINDO059
16 CCHTINUE
   IF (NU. EQ. 0) GC TO 20
                                                                             SIND0060
                                                                             SINDOO61
   DO 19 I=1,NU
   DC 19 J=1,NS
                                                                             SINDOO62
                                                                             SIND0063
   IF (KEY (J) . EQ. 2) GO TO 17
   IND (I, J+NU) = LM1 (YW (I), YS (J), ZW (I), ZS (J))
                                                                             SINDOO64
                                                                             SINDOO65
   GC TC 18
                                                                             SIND0066
17 CCNTINUE
                                                                             SINDC067
   IND(I, J+NU) = LM1(YW(I), YP(J), ZW(I), ZP(J))
                                                                             SINDOU68
18 CCNTINUE
                                                                             SINDOO69
   IND (I, J+NUPS) = LM1 (YW (I), YS (J), ZW (I), ZS (J))
                                                                             SINDCO70
19 CONTINUE
                                                                             SIND0071
20 CONTINUE
                                                                             SIND0072
21 CCNTINUE
                                                                             SINDO073
   IF(NS. EQ. 0) GO TO 28
   DC 27 I=1,NS
                                                                             SINDO074
                                                                             SINDO075
   IF (KEY (I) . EQ. 2) GO TO 24
                                                                             SINDOO76
   IND (I+NU, I+NUPS) = LS1 (RS(I), YS(I))
                                                                             SINDOO77
   DC 23 J=1,NS
   IF(I.EQ.J) GC TO 22
                                                                             SINDOO78
                                                                             SINDO079
   IND(I+NU_{J}+NUPS) = LM1(YS(I), YS(J), ZS(I), ZS(J))
                                                                             SINDOO80
22 CONTINUE
23 CCNTINUE
                                                                             SINDOO81
                                                                             SINDC082
   GC TO 26
                                                                             SINDOO83
24 CCNTINUE
                                                                             SINDOO84
   DC 25 J=1,NS
                                                                             SINDCO85
25 IND (I+NU, J+NUPS) = LM1 (YP (I), YS (J), ZP(I), ZS(J))
                                                                             SINDOO86
26 CCMTINUE
                                                                             SINDOO87
27 CCNTINUE
                                                                             SINDOO88
28 CONTINUE
                                                                             SINDOO89
   GC 1C 57
                                                                             SINDC090
29 CCNTINUE
   IF (NU. PQ. 0) GO TO 31
                                                                             SINDC091
                                                                             SIND0092
   DO 30 I=1,NU
30 IND (I, I) = LS2 (RW (I), YW (I))
                                                                             SINDO093
                                                                             SINDC094
31 CONTINUE
                                                                             SINDOJ95
   IF(NS.EQ.0) GC TO 36
                                                                             SIND0096
   DC 35 I=1,NS
   IKEY=KEY(I)
                                                                             SINDC097
                                                                             SINDO098
   GC TC (32,33), IKEY
32 IND (I+NU,I+NU) = LS2(RS(I),YS(I))
                                                                             SINDC099
                                                                             SIND0100
   GO TO 34
                                                                             SIND0101
33 IND (I+NU,I+NU) = LS2(RWP(I),YP(I))
                                                                             SIND0102
34 CCNTINUE
                                                                             SINDC103
   IND (I+NUPS, I+NUPS) =LS2 (RWH (I), YS (I))
                                                                             SIND0104
35 CONTINUE
                                                                             SIND0105
36 CONTINUE
                                                                             SINDO106
   IF (NU. EQ. 0) GO TO 38
                                                                             SIND0107
   NOM 1=NU-1
   DC 37 I=1, NUM1
                                                                             SIND0108
                                                                             SINDO109
   IP1=I+1
   DC 37 J=IP1,NU
                                                                             STND0110
37 IND (I, J) = LH2(YW(I), YW(J), ZW(I), ZW(J))
                                                                             SIND0111
                                                                             SINDO112
38 CONTINUE
   IF (NS. EQ. 0) GO TO 49
                                                                             SINDO113
                                                                             SINDO114
   NSM1=NS-1
                                                                             SIND0115
```

DO 44 I=1, NSM1

```
IF1=I+1
                                                                             SIND0116
   DC 44 J=IP1, NS
                                                                             SIND0117
   IF (KEY (I) . EQ. 1. AND. KEY (J) . EQ. 1) NK=1
                                                                             SIND0118
   IF (KEY(I).EQ.1.AND.KEY(J).EQ.2) NK=2
                                                                             SIND0119
   IF (KEY (I) \cdot EQ \cdot 2 · AND · KEY (J) · EQ · 1) NK=3
                                                                             SIND0120
   IF (KEY(I).EQ.2.AND.KEY(J).EQ.2) NK=4
                                                                             SINDO121
   GC TC (39,40,41,42), NK
                                                                             SINDO122
39 CCNTINUE
                                                                             SIND0123
   IND (I+NU, J+NU) = LM2 (YS(I), YS(J), ZS(I), ZS(J))
                                                                             SIND0124
   GO TO 43
                                                                             SIND0125
40 IND (I+NU,J+NU) = LM2 (YS(I),YP(J),ZS(I),ZP(J))
                                                                             SIND0126
                                                                             SINDC127
   GC TO 43
41 IND (I+NU, J+NU) = LM2 (YP(I), YS(J), ZP(I), ZS(J))
                                                                             SIND0128
   GC 1C 43
                                                                              SIND0129
                                                                              SINDC130
42 IND (I+NU,J+NU) = LM2 (YP(I),YP(J),ZP(I),ZP(J))
43 CCNTINUE
                                                                             SIND0131
   IND (I + NUPS, J + NUPS) = LM2 (YS (I), YS (J), ZS (I), ZS (J))
                                                                             SIND0132
                                                                              SIND0133
44 CCNTINUE
                                                                             SINDO134
   IF(NU. EQ. 0) GO TO 48
                                                                             SIND0135
   DC 47 I=1,NU
   DO 47 J=1,NS
                                                                             SIND0136
   IF (KFY (J) . FQ. 2) GO TO 45
                                                                             SIND0137
                                                                             SINDO138
   IND (I, J+NU) = LM2(YW(I), YS(J), ZW(I), ZS(J))
   GC TO 46
                                                                              SIND0139
45 CCNTINUE
                                                                             SIND0140
   IND (I, J+NU) = LM2 (YW (I), YP (J), ZW (I), ZP (J))
                                                                             SIND0141
46 CONTINUE
                                                                              SIND0142
   IND (I, J+NUPS) = LM2(YW(I), YS(J), ZW(I), ZS(J))
                                                                              SIND0143
47 CCNTINUE
                                                                              SINDO144
48 CONTINUE
                                                                              SIND0145
49 CCNTINUE
                                                                              3IND0146
                                                                              SIND0147
   IF (NS. EQ. 0) GC TO 56
   DO 55 I=1,NS
                                                                              SINDC148
   IF (KEY (I) . EQ. 2) GO TO 52
                                                                             SIND0149
   IND (I+NU, I+NUPS) =LS2 (RS (I), YS (I))
                                                                              SIND0150
                                                                              SINDO151
   DO 51 J=1,NS
   IF(I.EQ.J) GO TO 50
                                                                              SIND0152
                                                                             SIND0153
   IND (I+NU,J+NUPS) = LM2(YS(I),YS(J),ZS(I),ZS(J))
                                                                              SINDC154
50 CONTINUE
                                                                              SIND0155
51 CONTINUE
                                                                              SIND0156
   GC TC 54
                                                                              SINDC157
52 CONTINUE
   DC 53 J=1,NS
                                                                              SIND0158
                                                                              SIND0159
53 IND (I+NU, J+NUPS) = LM2 (YP (I), YS (J), ZP (I), ZS (J))
                                                                              SINDC160
54 CONTINUE
55 CONTINUE
                                                                              SIND0161
56 CCNTINUE
                                                                              SIND0162
                                                                              SIND0163
57 CONTINUE
   DO 58 I=2,NT
                                                                              SIND0164
                                                                              SIND0165
   IM1=I-1
                                                                              SIND0166
   DO 58 J=1, IN1
58 IND (I, J) = IND(J, I)
                                                                              SIND0167
                                                                              SIND0168
   RETURN
   END
                                                                              SIND0169
                                                                              SPH10001
                                                                              SPH10002
   SUBROUTINE PHI FOR COMPUTING THE CHAIN PARAMETER MATRICES
                                                                              SPHI0003
                                                                              SPH10004
                                                                              SPH10005
                                                                              SPH10006
   SUBROUTINE PHI (PHIT, NT, TNT, LMIN, GAM, Y, YINV, T, TI, EP, EN)
   IMPLICIT REAL+8 (A-H,O-Z)
                                                                              SPH10007
```

C

C C

C

C

```
INTEGER THT
                                                                               SPH10008
  REAL+8 LMIN
                                                                               SPHI0009
  CCMFLEX * 16 PHIT (TNT, TNT), GAM (NT), Y (NI, NT), YINV (NT, NT), T (NF, NT),
                                                                               SPHI0010
 1TI (NT, NT), EP (NT), EN (NT)
                                                                               SPHI0011
  CCMPLEX*16 ZEROC, ONEC, XJ, JCMEGA, SUMC, SUMC1, SUMC2
                                                                               SPHICO12
                                                                               SPH10013
  CCMMON /CCON/ ZEROC, ONEC, XJ, JOMEGA
                                                                               SPH10014
  TWO = 2. DO
  DC 1 I=1,NT
                                                                               SPH I 0015
  EP(I) = CDEXP (GAM (I) *LM IN)
                                                                               SPH10016
                                                                               SPH10017
1 EN(I) = CDEXP (-GAM(I) * LMIN)
  DC 3 I=1,NT
                                                                               SPHIC018
  DC 3 J=1,NT
                                                                               3PHI0019
  SUMC=ZERCC
                                                                               SPH10020
  SUMC 1= ZEROC
                                                                               SPH I 0021
  SUMC 2= Z EROC
                                                                               SPHI0022
  DC 2 K=1,NT
                                                                               SPH10023
  SUMC1=SUMC1+T(I,K) * (EP(K)+EN(K)) *TI(K,J)/TWO
                                                                               SPHI 0024
  SUMC2=SUMC2+T(I,K) +GAM(K) + (EP(K)-EN(K)) +TI(K,J)/TWO
                                                                               SPH10025
2 SUMC=SUMC+T(I,K) +(EP(K)-EN(K))+TI(K,J)/(TWO+GAM(K))
                                                                               SPHI0026
  PHIT (I,J) = SUMC1
                                                                               SPHI0027
  PRIT (I, J+NT) = -SUNC2
                                                                               SPHI0028
  PHIT (I+NT,J) = -SUMC
                                                                               SPH10029
3 PHII (I+NT, J+NI) =SUMC1
                                                                               SPHI 0030
                                                                               SPHI0031
  DC 5 I=1,NT
  DO 5 J=1,NT
                                                                               SPH10032
                                                                               SPH10033
  SUMC=ZEROC
  SUMC 1=ZFROC
                                                                               SPHI0034
  DC 4 K=1, NT
                                                                               SPH10035
  SUMC=SUMC+YINV (I,K) *PHIT (K, J)
                                                                               SPHI0036
4 SUMC 1= SUMC 1+YINV (I, K) *PHIT (K, J+NT)
                                                                               SPHI0037
  T(I,J) = SUMC
                                                                               SPHI0038
5 TI (I,J) = SUMC1
                                                                               SPHI0039
  DC 7 I=1,NT
DO 7 J=1,NT
                                                                               SPHI0040
                                                                               SPHI0041
  SUMC=ZEROC
                                                                               SPHI0042
  SUMC 1= ZEROC
                                                                               SPH10043
  DO 6 K=1, NT
                                                                               SPHI0044
  SUMC=SUMC+T(I,K) *Y(K,J)
                                                                               SPHI0045
6 SUMC1=SUMC1+PHIT(I+NT,K) *Y(K,J)
                                                                               SPHI0046
  PHIT (I, J) = SUMC
                                                                               SPHI0047
7 YINV(I,J)=SUMC1
                                                                               SPHI0048
  DC 8 I=1,NT
                                                                               SPHI0049
  DC 8 J=1,NT
                                                                               SPH10050
  PHI1(I,J+NT) = TI(I,J)
                                                                               SPHI 0051
8 PHIT (I+NT,J) = YINV(I,J)
                                                                               SPHI0052
  RETURN
                                                                               SPHI0053
                                                                               SPHI 0054
                                                                               SADM0001
                                                                               SADM0002
  SUBBOUTINE ADMADD FOR ADDING ELASTANCES TO THE INVERSE
                                                                               SADMC003
  OF THE CAPACITANCE MATRIX
                                                                               SADM0004
                                                                               SADMO005
                                                                               SADM0006
  SUBROUTINE ACMADD (KEY, NU, NS, NT, NUPS, RS, TS, RWH, ERS, SS, STV, NNU, NNS) SADMOOO7
  IPPLICIT REAL+8 (A-H,C-Z)
                                                                               SADM0008
  INTEGER KEY (NNS)
                                                                               SADMC009
  REAL*8 MU, MUO2PI, MUO4PI
                                                                               SADM0010
  REAL+8 RS (NNS), TS (NNS), RWH (NNS), ERS (NNS), SS (NT, NT), STV (NNS)
COMMON / BCON/ ZEBO, ONE, TWO, THREE, FOUR, MU, MUO2PI, MUO4PI,
                                                                               SAD40011
                                                                               SADM0012
 1PI, BADEG, ERTE, SIGCOP, P, F, V2
                                                                               SADMO013
                                                                               SADM0014
  IF(NS.EC.O) GC TO 4
```

```
SADM0015
  DC 3 I=1, NS
                                                                          SADM0016
  IF (KEY (I) . EQ. 2) GO TO 1
                                                                          SADM0017
  STRAN=STV(I)
  SWW=DLCG ((RS(I)-IS(I))/RWH(I))/(TWO*FI*ERS(I)*ERTE)
                                                                          SADM0018
  GC TC 2
                                                                          SADM0019
1 CCNTINUE
                                                                          SADM0020
                                                                          SADM0021
  STRAN=ZERO
  SWW=ZERO
                                                                          SADM0022
2 CCNTINUE
                                                                          SADM0023
  SS(I+NU,I+NUPS) = SS(I+NU,I+NUPS) +STRAN
                                                                          SADMC024
  SS(I+NUPS,I+NU) = SS(I+NUPS,I+NU) + STRAN
                                                                          SADM0025
  SS(I+NUPS,I+NUPS) =SS(I+NUPS,I+NUPS) +SWW+STRAN
                                                                          SADM0026
3 CONTINUE
                                                                          SADM0027
4 CONTINUE
                                                                          SADM0028
  RETURN
                                                                          SADM0029
                                                                          SADM0030
  PND
                                                                          SIMPOOO1
                                                                          SIMPO002
  SUBSCUTINE IMPADD FOR ACDING IMPERANCES TO THE IMPEDANCE
                                                                          SIMP0003
                                                                          SIMPCO04
  MATRIX
                                                                          SIMP0005
                                                                          SIMP0006
  SUBROUTINE IMPADD(Z, KEY, NU, NS, NT, NUFS, ZSV, ZDV, LTV, ZWPIV, ZWWHV,
                                                                          SIMP0007
                                                                          SIMPO008
 INNU, NNS)
  IMPLICIT REAL+8 (A-H, 0-Z)
                                                                           SIMPO009
  REAL*8 MU, MUO2PI, MUO4PI, LTRAN, LTB
                                                                          SIMPO010
  COMPLEX#16 ZERCC, ONEC, XJ, JONEGA
                                                                          SIMP0011
  INTEGER KEY (NNS)
                                                                          SIMPO012
  REAL+8 LTV(NNS)
                                                                          SIMPO013
  CCMFIEX * 16 ZSELF, ZDIF, Z(NT, NT), ZSV(NNS), ZDV(NNS), ZWFLV(NNS),
                                                                          SIMPO014
 12WHV(NNS)
                                                                          SIMPO015
  COMMON /ROON/ ZERO, ONE, TWO, THREE, FOUR, MU, MUO2PI, MUO4PI,
                                                                          SIMPOO16
 1PI, BADEG, ERTE, SIGCOP, R, F, V2
                                                                          SIMPO017
                                                                          SIMPC018
  COMMON /CCON/ ZEROC, ONEC, KJ, JONEGA
  IF (NS. EQ. 0) GO TO 4
                                                                          SIMP0019
  DO 3 I=1, NS
                                                                          SIMPO020
  IF (KEY (I) . EQ. 2) GO TO 1
                                                                          SIMPO021
  ZSELF=ZSV(I)
                                                                          SIMP0022
                                                                          SIMPO023
  ZDIF=ZDV(I)
                                                                          SIMP0024
  LIRAN=LIV(I)
                                                                          SIMPO025
  GO 10 2
                                                                           SIMPO026
1 CCNTINUE
  ZSEIF=ZWPLV(I)
                                                                          SIMP0027
  ZDIF=ZSELF
                                                                          SIMP0028
  LTRAN=ZERO
                                                                          SIMPO029
2 CCNTINUE
                                                                          SIMP0030
  Z(I+NU,I+NU) = Z(I+NU,I+NU) + ZSELP
                                                                          SIMPOO31
  Z(I+NU,I+NUPS) = Z(I+NU,I+NUPS) +ZSELF-2CIF-JOHEGA+LTRAN
                                                                          SIMPO032
  Z (I+NUPS, I+NU) = 2 (I+NUPS, I+NU) +ZSELF-ZCIF-JOMEGA*LTPAN
                                                                          SIMP0033
  Z(I+NUPS, I+NUPS) = Z(I+NUPS, I+NUPS) +TWC+(ZSELF-ZDIF-JCMEGA+LTRAN)
                                                                          SIMPO034
 1+2WWHV (I)
                                                                          SIMPO035
3 CCNTINUE
                                                                          SIMP0036
4 CONTINUE
                                                                          SIMP0037
  RETURN
                                                                          SIMPO038
                                                                          SIMP0039
```

C

¢

C

C

C

APPENDIX B

Conversion of SHIELD to Single Precision

Conversion of SHIELD to Single Precision

Delete ()()3	8
----------	----	----	---

Card	Double Precision	Single Precision
0039	REAL*8	REAL
0041	COMPLEX*16	COMPLEX
0063	REAL*8	REAL.
0075	COMPLEX*16	COMPLEX
0090	REAL*8	REAL
0091	COMPLEX*16	COMPLEX
0103	REAL*8	REAL
0108	COMPLEX*16	COMPLEX
0117	0.0DO	0.0EO
0118	1.0DO	1.0EO
0119	2.0DO	2.0EO
0120	3.0DO	3.0EO
0121	4.0DO	4.0EO
0122	2.54D-5	2.54E-5
0123	2.D-7	2.E-7
0124	1.D-7	1.E-7
0125	180.DO	180.EO
0126	2.997925D8	2.997925E8
0127	5.8D-7	5.8E-7
0128	DCMPLX	CMPLX
0129	DCMPLX	CMPLX
0130	DCMPLX	CMPLX
0131	DATAN	ATAN

Card	Double Precision	Single Precision
0241	45.DO	45.EO
0345	DSIN	SIN
0346	DCOS	COS
0347	DSIN	SIN
0348	DCOS	COS
0351	DSQRT	SQRT
0351	DCOS	COS
0352	DATAN2	ATAN2
0352	DSIN	SIN
0353	DCOS	COS
0354	DSQRT	SQRT
0354	DCOS	cos
0355	DATAN2	ATAN2
0355	DSIN	SIN
0356	DCOS	cos
0530	DCMPLX	CMPLX
0609	DREAL	REAL
0620	CDSQRT	CSQRT
0680	DREAL	REAL
0691	CDSQRT	CSQRT
0735	DREAL	REAL
0746	CDSQRT	CSQRT
0774	DREAL	REAL
0785	CDSQRT	CSQRT
0931	CDABS	CABS

Card	Double Precision	Single Precision		
0932	DREAL	REAL		
0933	DIMAG	AIMAG		
0934	DATAN2	ATAN2		
0936	CDABS	CABS		
0937	DREAL	REAL		
0938	DIMAG	AIMAG		
0939	DATAN2	ATAN2		
0950	CDABS	CABS		
0951	DREAL	REAL		
0952	DIMAG	AIMAG		
0953	DATAN2	ATAN2		
0955	CDABS	CABS		
0956	DREAL	REAL		
0957	DIMAG	AIMAG		
0958	DATAN2	ATAN2		
FUNCTION LS1				
0007	LS1*8	LS1		
Delete 0008				
0009	REAL*8	REAL		
0012	DLOG	ALOG		
FUNCTION LM1				
0007	LM1*8	LM1		
Delete 0008		_		
0009	REAL*8	REAL		
0015	DLOG	ALOG		
	1/5			

FUNCTION LS2

0007	LS2*8	LS2
Delete 0008		
0009	REAL*8	REAL
0012	DLOG	ALOG
	THINGS TON THE	
	FUNCTION LM2	
0007	LM2*8	LM2
Delete 0008		
0009	REAL*8	REAL
0016	DLOG	ALOG
0017	DCOS	cos
0017	DCOS	cos
	DIMOTION CTP	
	FUNCTION STB	
0007	STB*8	STB
Delete 0008		
0010	REAL*4	REAL
0011	REAL*8	REAL
0020	DCOS	cos
0023	1.0D-2	1.0E-2
0024	5.0D0	5.0EO
0026	5.0D-2	5.0E-2

45.0EO

45.0DO

0045

FUNCTION LTB

0007	LTB*8	LTB		
Delete 0008				
0010	REAL*4	REAL		
0011	REAL*8	REAL		
0020	DCOS	cos		
0023	1.0D-2	1.0E-2		
0024	5.0DO	5.0EO		
0026	5.0D-2	5.0E-2		
0045	45.0DO	45.0EO		
	TUNION OUT OF THE			
	FUNCTION ZWW			
0006	ZWW*16	ZWW		
Delete 0007				
0008	REAL*8	REAL		
0009	COMPLEX*16	COMPLEX		
0010	Change all D's to E's			
0014	DSQRT	SQRT		
TUNOTTON CON				
	FUNCTION ZDB			
0007	ZDB*16	ZDB		
Delete 0008				
0010	REAL*8	REAL		
0011	COMPLEX*16	COMPLEX		
0015	DSQRT	SQRT		
0018	CDEXP	CEXP		
0018	CDEXP	CEXP		
0020	DCOS	cos		

FUNCTION ZSB

0006	ZSB*16	ZSB
Delete 0007		
0009	REAL*8	REAL
0010	COMPLEX*16	COMPLEX
0014	Change all D's to E's	
0015	DSQRT	SQRT
0021	DCOS	cos
0023	DCOS	cos
0026	DCOS	cos
	William Tox. To 5	
	FUNCTION ZDS	
0007	ZDS*16	ZDS
Delete 0008		
0009	REAL*8	REAL
0010	COMPLEX*16	COMPLEX
0014	DSQRT	SQRT
0017	CDEXP	CEXP
0017	CDEXP	CEXP
	FUNCTION ZSS	
0007	ZSS*16	ZSS
Delete 0008		
0009	REAL*8	REAL
0010	COMPLEX*16	COMPLEX
0014	DSQRT	SQRT
0016	DEXP	EXP
0016	DEXP	EXP

148

FUNCTION ZSS (Cont'd)

0017 DEXP EXP 0017 DEXP EXP 0018 DSIN SIN 0018 DCOS COS 0020 DSIN SIN 0020 DCOS COS

SUBROUTINE MULTC

Delete 0007

O008 COMPLEX*16 COMPLEX

SUBROUTINE SCAP

Delete 0008

0010 REAL*8 REAL
0011 2.997925D8 2.997925E8

SUBROUTINE INDUCT

Delete 0008

 0010
 REAL*8
 REAL

 0011
 REAL*8
 REAL

SUBROUTINE PHI

Delete 0007

 0009
 REAL*8
 REAL

 0010
 COMPLEX*16
 COMPLEX

 0012
 COMPLEX*16
 COMPLEX

 0014
 2.DO
 2.EO

SUBROUTINE PHI (Cont'd)

OO16 CDEXP CEXP

OO17 CDEXP CEXP

SUBROUTINE ADMADD

Delete 0008

0010 REAL*8 REAL

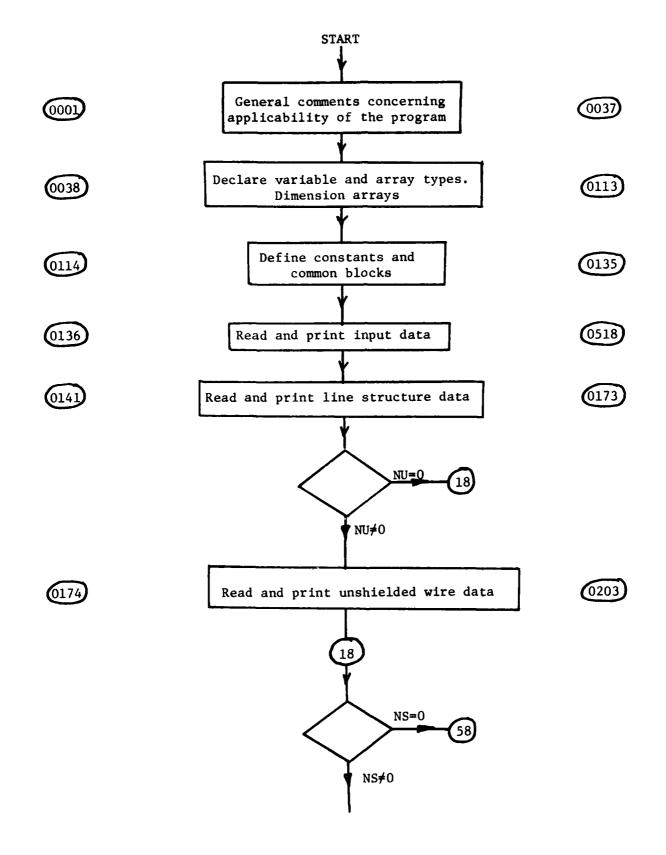
0011 REAL*8 REAL

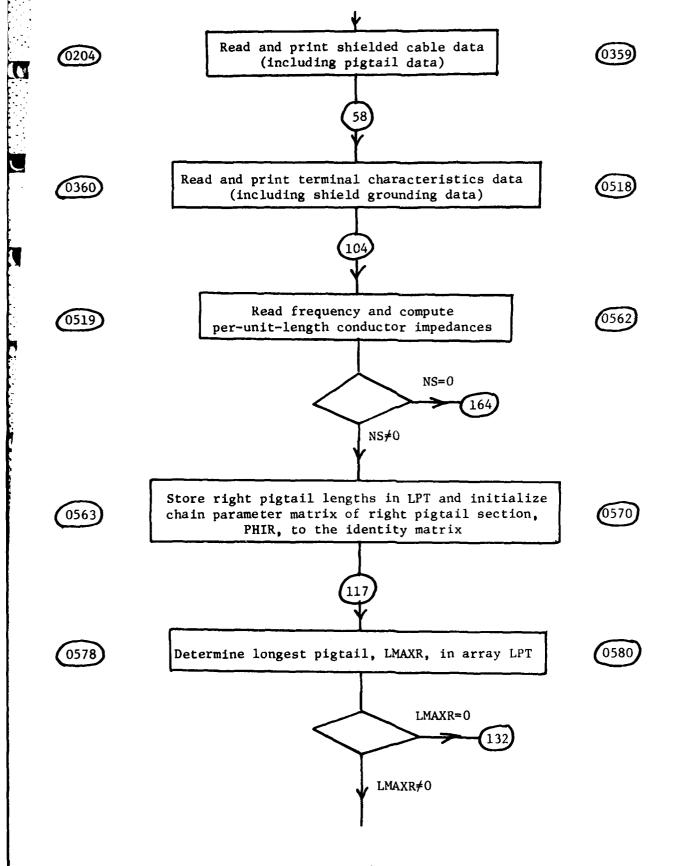
DLOG ALOG

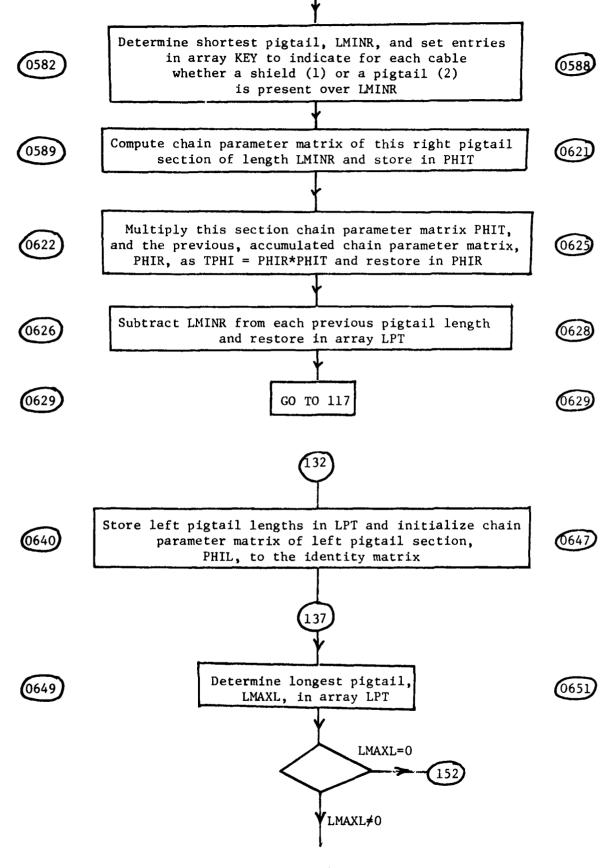
SUBROUTINE IMPADD

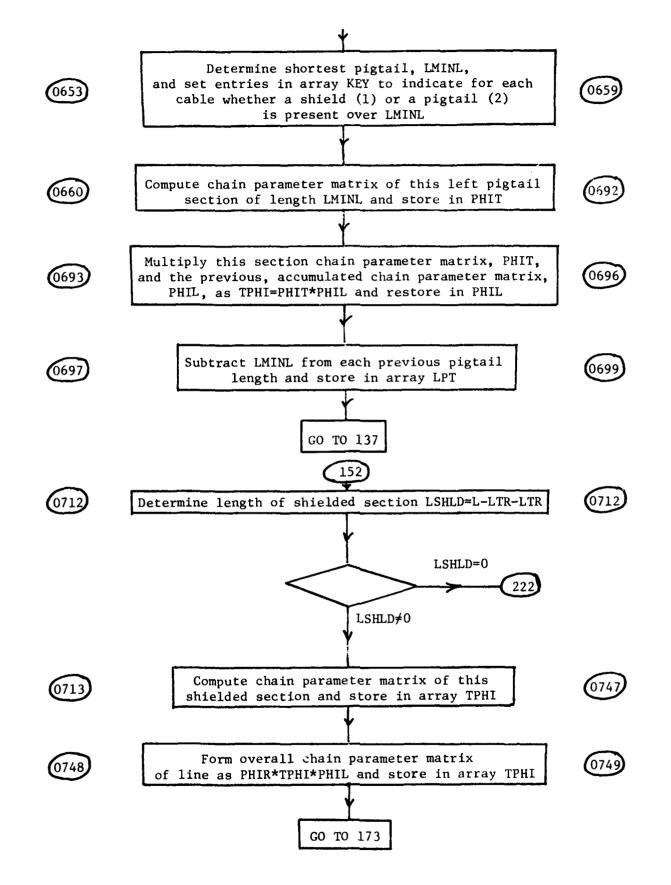
Delete 0009

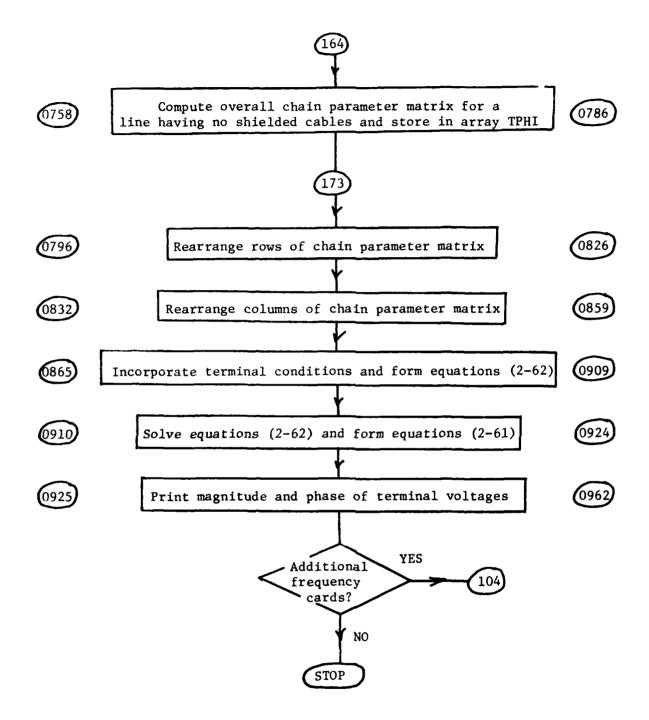
0010 REAL*8 REAL


OO11 COMPLEX*16 COMPLEX


0013 REAL*8 REAL


0014 COMPLEX*16 COMPLEX


APPENDIX C


Flowchart of SHIELD

CONTRACTOR CONTRACTOR

MISSION of Rome Air Development Center

RADC plans and executes research, development, test and selected acquisition programs in support of Command, Control Communications and Intelligence (C^3I) activities. Technical and engineering support within areas of technical competence is provided to ESD Program Offices (POs) and other ESD elements. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.